www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenvektoren bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Eigenwerte" - Eigenvektoren bestimmen
Eigenvektoren bestimmen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektoren bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 Fr 23.01.2015
Autor: potu

Aufgabe
Klassifizieren Sie folgende Kurve zweiten Grades mittels Hauptachsentransformation:
[mm] 8x^2 [/mm] + 12xy + [mm] 17y^2 [/mm] − 44x − 58y − 7 = 0

Hallo!
Bei folgender Hauptachsentransformation muss ich auch Eigenvektoren berechnen wenn ich das richtig verstanden habe. Nun habe ich eine ganz einfache Frage: Meine Eigenwerte sind 20 und 5. Diese setzte ich dann in die Gleichung ein die bei mir wäre : [mm] \lambda [/mm] x = 1/6 y * [mm] (-100+8\lambda) [/mm]
Dann kommt bei mir wenn ich z.B. 20 einsetzte heraus 2x = y.
Wie bilde ich jetzt den Eigenvektor?

LG

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenvektoren bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Fr 23.01.2015
Autor: angela.h.b.


> Klassifizieren Sie folgende Kurve zweiten Grades mittels
> Hauptachsentransformation:
>  [mm]8x^2[/mm] + 12xy + [mm]17y^2[/mm] − 44x − 58y − 7 = 0
>  Hallo!
> Bei folgender Hauptachsentransformation muss ich auch
> Eigenvektoren berechnen wenn ich das richtig verstanden
> habe. Nun habe ich eine ganz einfache Frage: Meine
> Eigenwerte sind 20 und 5.

Hallo,

[willkommenmr]

> Diese setzte ich dann in die
> Gleichung ein

Die Korrektur fällt leichter, wenn man Deine Gleichung sieht.
Du müßtest eigentlich ein Gleichungssystem haben.

> die bei mir wäre : [mm]\lambda[/mm] x = 1/6 y *
> [mm](-100+8\lambda)[/mm]

>  Dann kommt bei mir wenn ich z.B. 20 einsetzte heraus 2x = y.

Du weißt dann: alle Vektoren, die von der Machart [mm] \vektor{x\\2x}=x*\vektor{1\\2}, x\not=0, [/mm] sind, sind Eigenvektoren zum EW 20.
Der Eigenraum zum Eigenwert 20 wird aufgespannt von [mm] \vektor{1\\2}, [/mm] und diesen kannst Du dann nehmen. (Er stimmt.)

LG Angela


Bezug
                
Bezug
Eigenvektoren bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Mo 26.01.2015
Autor: potu

Und wenn x = -2y rauskommt dann ist der Vektor [mm] \vektor{-2 \\ 1} [/mm] oder?

Bezug
                        
Bezug
Eigenvektoren bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Mo 26.01.2015
Autor: leduart

Hallo
nicht falsch, nur das Wort DER Vektor ist falsch . geausogut ist der Vektor  [mm] \vektor{2 \\ -1} [/mm] ; [mm] \vektor{-30 \\ 15 }und \vektor{\pi \\ -\pi/2} [/mm]
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]