www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenvektoren von Matritzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Eigenvektoren von Matritzen
Eigenvektoren von Matritzen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektoren von Matritzen: Berechnung an Beispielen
Status: (Frage) beantwortet Status 
Datum: 19:11 Di 20.11.2007
Autor: Sayu

Aufgabe
man berechne die Eigenwerte und zugehörigen Eigenräume für folgende (2x2)-Matritzen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
ich habe leider ein kleines Problem und komme nicht weiter. Eine der oben genannten Matritzen ist  
[mm] A=\pmat{ 0 & 1 \\ 4 & 3 } [/mm]
davon habe ich schon das charakteristische Polinom [mm] \lambda^2-3\lambda-4 [/mm]
                         die Eigenwerte: [mm] \lambda1=4 [/mm]
                                          [mm] \lambda2=-1 [/mm]   herausbekommen.

Wie genau kann ich daraus jetzt die Eigenvektoren bestimmen ? Weis mit der Formel [mm] (A-\lambdaI)b=0 [/mm] nicht wirklich was anzufangen

2. Habe ich in vielen Büchern etwas von einem "Freiheitsgrad" gelesen, was ist das genau?

und
3. Was soll mir das "Normalisieren" sagen?




Vielen Dank schon mal im vorraus!!!!!!

Kristin

        
Bezug
Eigenvektoren von Matritzen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:46 Di 20.11.2007
Autor: schachuzipus

Hallo Kristin,


> man berechne die Eigenwerte und zugehörigen Eigenräume für
> folgende (2x2)-Matritzen
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo,
> ich habe leider ein kleines Problem und komme nicht weiter.
> Eine der oben genannten Matritzen ist  
> [mm] A=\pmat{ 0 & 1 \\ 4 & 3 } [/mm]
>  davon habe ich schon das
> charakteristische Polinom [mm] \lambda^2-3\lambda-4 [/mm]
>                           die Eigenwerte: [mm] \lambda1=4 [/mm]
>                                            [mm] \lambda2=-1 [/mm]   [daumenhoch]
> herausbekommen.
>  
> Wie genau kann ich daraus jetzt die Eigenvektoren bestimmen
> ? Weis mit der Formel [mm] (A-\lambda [/mm] I)b=0 nicht wirklich was
> anzufangen

Du musst für jeden der Eigenwerte [mm] \lambda_1,\lambda_2 [/mm] das Gleichungssystem [mm] (A-\lambda_i\cdot{}I_2)\cdot{}b=0 [/mm] lösen, wobei [mm] $b=\vektor{b_1\\b_2}$ [/mm] ist, also den Kern der Matrix [mm] (A-\lambda_i \cdot{} I_2) [/mm] bestimmen

Mal zu [mm] \lambda_1=4 [/mm]

Wie sieht [mm] A-\lambda_1\cdot{} I_2 [/mm] aus?

[mm] A-4\cdot{} I_2=\pmat{ 0 & 1 \\ 4 & 3 }-\pmat{ 4 & 0 \\ 0 & 4 }=\pmat{ -4 & 1 \\ 4 & -1 } [/mm]

Bringe das in Zeilenstufenform, dann hast du den Kern von [mm] A-4\cdot{} I_2 [/mm]

Nimm daraus einen beliebigen Vektor [mm] \neq [/mm] 0 heraus, das ist dann ein Eigenvektor zu [mm] \lambda_1=4 [/mm]

Analog für den anderen Eigenwert [mm] \lambda_2=-1 [/mm]

> 2. Habe ich in vielen Büchern etwas von einem
> "Freiheitsgrad" gelesen, was ist das genau?

Das ist die Anzahl der frei wählbaren Parameter bei der Bestimmung der Lösung eines GS, hier des Kerns von [mm] A-\lambda_i \cdot{} I_2 [/mm]

Wenn du die Rechnungen mal machst, wirst du sehen, dass du in beiden Fällen eine Nullzeile erhältst, somit also 1 Freiheitsgrad, einen frei wählbaren Parameter hast (zB [mm] $b_2=t$ [/mm] mit [mm] $t\in\IR$) [/mm]  


> und
>  3. Was soll mir das "Normalisieren" sagen? [kopfkratz3]

Keine Ahnung, in welchem Zusammenhang denn?


>  
>
>
>
> Vielen Dank schon mal im vorraus!!!!!!
>  
> Kristin


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]