www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwert , Transformationsmat
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Eigenwert , Transformationsmat
Eigenwert , Transformationsmat < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert , Transformationsmat: Transformationsmatrix
Status: (Frage) beantwortet Status 
Datum: 13:18 Do 24.05.2012
Autor: Masseltof

Aufgabe
1) Berechnen Sie die Eigenwerte [mm] \lambda_{i} [/mm] i=1,2
für

A= [mm] 0.5\pmat{3.5&4.5\\4.5&3.5} [/mm]

2)Berechnen Sie
[mm] A^{3} \pmat{-1\\1}= [/mm]
[mm] A^{10}\pmat{-1\\1}= [/mm]

3)Bestimmen Sie die orthogonale Transformationsmatrix Q, sodass
[mm] \pmat{\lambda_{1}&0\\0&\lambda_{2}}=Q^{T}AQ [/mm]
gilt.

Hallo.

1)Ich soll die obigen Aufgaben berechnen:
[mm] \lambda_{1}=0.75 [/mm]
[mm] \lambda_{2}=-6.25 [/mm]

2)Ich habe mir hierbei gedacht, dass ich die Matrix-Matrix Multipliatkation folgendermaßen durchführe:
[mm] A*A=A^2 [/mm]
[mm] A^2*A =A^3 [/mm]

Mein Problem ist das für A * A die Anzahl der Zeilen ungleich der Anzahl der Spalten ist.
Das Falkschema würde folgendermaßen aussehen:
                         -1          
                          1

-1
1

Wie soll man denn hier vorgehen?

3) Gibt es denn hierfür einen bestimmten Rechenweg?
Leider weiß ich nicht, was ich hier machen soll.

Grüße

        
Bezug
Eigenwert , Transformationsmat: zu 1. und 2.
Status: (Antwort) fertig Status 
Datum: 14:54 Do 24.05.2012
Autor: barsch

Hallo!


> 1) Berechnen Sie die Eigenwerte [mm]\lambda_{i}[/mm] i=1,2
>  für
>
> A= [mm]0.5\pmat{3.5&4.5\\ 4.5&3.5}[/mm]
>  
> 2)Berechnen Sie
> [mm]A^{3} \pmat{-1\\ 1}=[/mm]
>  [mm]A^{10}\pmat{-1\\ 1}=[/mm]
>  
> 3)Bestimmen Sie die orthogonale Transformationsmatrix Q,
> sodass
>  [mm]\pmat{\lambda_{1}&0\\ 0&\lambda_{2}}=Q^{T}AQ[/mm]
>  gilt.
>  Hallo.
>  
> 1)Ich soll die obigen Aufgaben berechnen:
>  [mm]\lambda_{1}=0.75[/mm]
>  [mm]\lambda_{2}=-6.25[/mm]

Das stimmt nicht!

>  
> 2)Ich habe mir hierbei gedacht, dass ich die Matrix-Matrix
> Multipliatkation folgendermaßen durchführe:
>  [mm]A*A=A^2[/mm]
>  [mm]A^2*A =A^3[/mm]

Es ist in deinem Fall - bei 2 verschiedenen Eigenwerten [mm]\lambda_1,\lambda_2[/mm] - mit Transformationsmatrix S:

[mm]S^{-1}*A*S=\pmat{ \lambda_1 & 0 \\ 0 & \lambda_2 } [/mm] und somit: [mm]A=S*\pmat{ \lambda_1 & 0 \\ 0 & \lambda_2 } S^{-1}[/mm], damit lässt sich [mm]A^{n}[/mm] ganz leicht berechnen.


> Mein Problem ist das für A * A die Anzahl der Zeilen
> ungleich der Anzahl der Spalten ist.
>  Das Falkschema würde folgendermaßen aussehen:
>                           -1          
> 1
>  
> -1
>   1
>  
> Wie soll man denn hier vorgehen?


Gruß
barsch


Bezug
                
Bezug
Eigenwert , Transformationsmat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 Do 24.05.2012
Autor: Masseltof

Hallo und danke für die Antwort.

Ich habe einen kleinen Fehler in der Aufgabenstellung gemacht:
[mm] A=0.5\pmat{7&9\\9&7}=\pmat{3.5&4.5\\4.5\\3.5} [/mm]
Demnach bezieht sich meine Rechnung natürlich auch auf diese Matrix.
Wenn noch einmal jemand drüberschauen würde, würde es mich freuen.

Die zwei werde ich berechnen sobald ich zu Hause bin und ebenfalls eine Lösung zur 3 suchen.


Grüße und danke für die Hilfe.

Bezug
                        
Bezug
Eigenwert , Transformationsmat: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Do 24.05.2012
Autor: barsch

Hallo nochmal,

> Hallo und danke für die Antwort.
>  
> Ich habe einen kleinen Fehler in der Aufgabenstellung
> gemacht:
>  [mm]A=0.5\pmat{7&9\\ 9&7}=\pmat{3.5&4.5\\ 4.5\\ 3.5}[/mm]
>  Demnach bezieht sich meine Rechnung natürlich auch auf
> diese Matrix.

ja [grins] - ist aber trotzdem falsch!

>  Wenn noch einmal jemand drüberschauen würde, würde es
> mich freuen.

Wenn du weißt, wie du vorgehen musst und einfach nur prüfen willst, ob deine Ergebnisse stimmen, empfiehlt sich diese Seite:[]http://www.arndt-bruenner.de/mathe/scripts/eigenwert2.htm

Einfach Matrix eingeben und schon spuckt er die Eigenwerte und -vektoren aus!

> Die zwei werde ich berechnen sobald ich zu Hause bin und
> ebenfalls eine Lösung zur 3 suchen.

>
> Grüße und danke für die Hilfe.

Gruß
barsch


Bezug
        
Bezug
Eigenwert , Transformationsmat: zu 3.
Status: (Antwort) fertig Status 
Datum: 15:05 Do 24.05.2012
Autor: barsch

Kurzer Nachtrag zu 3.

Wende Gram-Schmidt auf die Eigenvektoren an. Du wirst sehen, in diesem konkreten Besipiel ist es nicht sehr aufwendig.

Gruß
barsch


Bezug
                
Bezug
Eigenwert , Transformationsmat: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:08 Do 24.05.2012
Autor: barsch

Nun gut, jetzt hat sich deine Korrektur bzgl der Ausgangsmatrix mit dieser Antwort überschnitten. Ich würde immer noch Gram-Schmidt anwenden. Ob es in diesem Fall jedoch auch so einfach ist...


Bezug
                        
Bezug
Eigenwert , Transformationsmat: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:00 Do 24.05.2012
Autor: Masseltof

Hallo und danke für die Mühe.

Heute ist wirklich der Wurm drinnen.....
Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]