www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwerte- und vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte- und vektoren
Eigenwerte- und vektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte- und vektoren: Erklärung
Status: (Frage) beantwortet Status 
Datum: 18:55 Sa 13.06.2015
Autor: Sunnybow1

Aufgabe
Bestimmen Sie die Eigenwerte- und vektoren der Leslie-Matrix.
Die Matrix lautet L= [mm] \pmat{ 0 & 0,4 & 0,8 & 0,2 \\ 0,9 & 0 & 0 & 0 \\ 0 & 0,7 & 0 & 0 \\ 0 & 0 & 0,4 & 0 } [/mm]
Der Anfangsvektor ist [mm] \vektor{350 \\ 204 \\ 166 \\ 50} [/mm]

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de//forum/Eigenwerte-und-vektoren-einer-Leslie-Matrix

Wie berechne ich denn die Eigenwerte und Eigenvektoren einer Leslie-Matrix?

        
Bezug
Eigenwerte- und vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 05:42 So 14.06.2015
Autor: angela.h.b.


> Bestimmen Sie die Eigenwerte- und vektoren der
> Leslie-Matrix.
> Die Matrix lautet L= [mm]\pmat{ 0 & 0,4 & 0,8 & 0,2 \\ 0,9 & 0 & 0 & 0 \\ 0 & 0,7 & 0 & 0 \\ 0 & 0 & 0,4 & 0 }[/mm]
>  
> Der Anfangsvektor ist [mm]\vektor{350 \\ 204 \\ 166 \\ 50}[/mm]
>  Ich

> Wie berechne ich denn die Eigenwerte und Eigenvektoren
> einer Leslie-Matrix?

Hallo,

[willkommenmr].

Man macht das so, wie bei jeder anderen Matrix auch:

die Eigenwerte [mm] \lambda [/mm] sind die Nullstellen des charakteristischen Polynoms,
also die Nullstellen von [mm] \chi (\lambda)=det(L-\lambda [/mm] E),

hier: von [mm] \chi (\lambda)=det\pmat{ -\lambda & 0,4 & 0,8 & 0,2 \\ 0,9 & -\lambda & 0 & 0 \\ 0 & 0,7 & -\lambda & 0 \\ 0 & 0 & 0,4 & -\lambda} [/mm]

Diese Determinante mußt Du nun erstmal berechnen und dann die Nullstellen bestimmen.

Die zu [mm] \lambda_i [/mm] gehörenden Eigenvektoren findest Du anschließend, indem Du [mm] Kern(L-\lambda_i [/mm] E) bestimmst.

Leg' mal los.
Falls es Probleme gibt, zeig' was Du tust,
damit wir Dir weiterhelfen können.

LG Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]