www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte
Eigenwerte < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte: Frage
Status: (Frage) beantwortet Status 
Datum: 14:13 Fr 24.06.2005
Autor: holg47

Hallo!

Ich soll in einer Aufgabe beweisen, dass eine symmetrische Matrix (allgemeine symmetrische Matrix)

1. Eigenwerte besitzt

2. diese Eigenwerte ausschließlich positiv sind.

Ich hab schon in einigen Büchern gestöbert, aber ich finde keinen anschaulichen Beweis.

Vielen Dank!

        
Bezug
Eigenwerte: falsche Aufgabenstellung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:21 Fr 24.06.2005
Autor: Stefan

Hallo!

Und was ist mit der Matrix [mm] $A=\pmat{ -1 & 0 \\ 0 & -1}$? [/mm]

Die hat den zweifachen negativen Eigenwert $-1$ und ist symmetrisch.

Fehlt da vielleicht irgendwo ein "positiv definit"?

Viele Grüße
Stefan

Bezug
                
Bezug
Eigenwerte: Frage
Status: (Frage) beantwortet Status 
Datum: 21:33 Fr 24.06.2005
Autor: holg47

Sorry, hab mich vertan!

Die Eigenwerte sollen reell sein!!

Also die Aufgabe lautet:

Ich soll in einer Aufgabe beweisen, dass eine symmetrische Matrix (allgemeine symmetrische Matrix)

1. Eigenwerte besitzt

2. diese Eigenwerte ausschließlich reell sind.

Vielen Dank!

Bezug
                        
Bezug
Eigenwerte: Antwort Teilfrage 2
Status: (Antwort) fertig Status 
Datum: 18:35 Sa 25.06.2005
Autor: jeu_blanc

Salut!

Die Eigenwerte müssen alle reell sein, da für jede reelle, quadratische nxn-Matrix zusammen mit einem Eigenwert [mm] \lambda [/mm] = [mm] \alpha [/mm] + [mm] i\omega [/mm] auch das komplex konjugierte [mm] \overline{\lambda} [/mm] = [mm] \alpha [/mm] - [mm] i\omega [/mm] Eigenwert ist.

Bv = [mm] \lambda*v, B\overline{v} [/mm] = [mm] \overline{\lambda*v} [/mm]

Aus der Symmetrie von B folgt sodann:

[mm] \overline{v}^{T}Bv [/mm] = [mm] v^{T}B\overline{v}, [/mm] also
[mm] \overline{v}^{T}v\lambda [/mm] = [mm] v^{T} \overline{\lambda v} [/mm]
mit anderen Worten: [mm] |v|\lambda [/mm] = [mm] |v|\overline{\lambda} [/mm]
und somit [mm] \lambda [/mm] = [mm] \overline{\lambda} [/mm]
=> [mm] \lambda [/mm] ist reell.

Au revoir!

Bezug
                        
Bezug
Eigenwerte: Zum 1. Teil
Status: (Antwort) fertig Status 
Datum: 00:26 So 26.06.2005
Autor: Christian

Hallo.

Es gibt zu deiner 1. Teilaufgabe einen Beweis, der die algebraische Abgeschlossenheit von [mm] \IC [/mm] benutzt.
Du betrachtest einfach deine symmetrische Matrix mit reellen Einträgen als Matrix über [mm] \IC, [/mm] das charakteristische Polynom dieser MAtrix hat natürlich über [mm] \IC [/mm] Nullstellen, also gibt es Eigenwerte.
Ganz analog zu jeu_blanc kannst Du nun zeigen, daß diese Eigenwerte alle reell sein müssen.

Gruß,
Christian


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]