www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwerte + unitärer VR
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte + unitärer VR
Eigenwerte + unitärer VR < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte + unitärer VR: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Di 17.02.2009
Autor: visionmaster17

Hallo,

ich bin mir wieder ein wenig unsicher, ob mein Beweis richtig ist, da die Musterlösung von meiner etwas abweicht.

Aufgabe: Sei [mm] \Phi [/mm] ein Endomorphismus eines endlichdimensionalen unitären Vektorraums V [mm] \not= \{0\} [/mm] mit der Adjungierten [mm] \Phi^{+} [/mm] = [mm] -\Phi. [/mm] Zeigen Sie:

Alle Eigenwerte von [mm] \Phi [/mm] haben die Form [mm] \mathit{i}c [/mm] mit c [mm] \in \IR. [/mm]

Mein Beweis: (< * , * >  bezeichne das Skalarprodukt auf V)
Zunächst habe ich mir mal überlegt, was [mm] \Phi^{+} [/mm] = [mm] -\Phi [/mm] für alle Elemente aus V bedeutet.

Sei x, y [mm] \in [/mm] V. Dann gilt:
[mm] <\Phi(x), [/mm] y> = <x, [mm] -\Phi(y)> \gdw <\Phi(x), [/mm] y> = - <x, [mm] \Phi(y)> \gdw <\Phi(x), [/mm] y> + <x, [mm] \Phi(y)> [/mm] = 0.

Okay. Nun nehme ich mir ein Eigenwert von [mm] \Phi [/mm] und nenne diesen z [mm] \in \IC [/mm] mit z := a + [mm] \mathit{i}b [/mm] mit a, b [mm] \in \IR. [/mm] Zu diesem Eigenwert existiert ein Vektor v [mm] \in [/mm] V, der Eigenvektor zu z. v kann und darf nicht Null sein.

Für v gilt dann:
[mm] <\Phi(v), [/mm] v> + <v, [mm] \Phi(v)> [/mm] = 0 [mm] \gdw [/mm] (v Eigenvektor [mm] \Rightarrow \Phi(v) [/mm] = zv)
<zv, v> + <v, zv> = 0

So, die nächste Umformung wird spannend. Für Skalarprodukte eines unitären Vektorraumes gelten ja besondere Rechenregeln. < * , * > ist im ersten Argument linear und im zweiten Argument auch. Jedoch muss ein "skalarer" Faktor, der aus dem zweiten Argument des Skalarproduktes gezogen wird, komplex konjugiert werden. Also:

<zv, v> + <v, zv> = 0 [mm] \gdw [/mm]
z <v, v> + [mm] \overline{z} [/mm] <v, v> = 0 [mm] \gdw [/mm]
<v, v>(z + [mm] \overline{z}) [/mm] = 0

<v, v> ist sicher ungleich 0. Also:

<v, v>(z + [mm] \overline{z}) [/mm] = 0 [mm] \gdw [/mm]
z + [mm] \overline{z} [/mm] = 0 [mm] \gdw [/mm]
a + [mm] \mathit{i}b [/mm] + [mm] \overline{a + \mathit{i}b} [/mm] = 0 [mm] \gdw [/mm]
a + [mm] \mathit{i}b [/mm] + a - [mm] \mathit{i}b [/mm] = 0 [mm] \gdw [/mm]
[mm] 2a(\mathit{i}b [/mm] - [mm] \mathit{i}b) [/mm] = 0 [mm] \gdw [/mm]
2a = 0 [mm] \gdw [/mm] a = 0 [mm] \Rightarrow [/mm] z hat die Form z = 0 + [mm] \mathit{i}b [/mm] = [mm] \mathit{i}b. [/mm]

Daraus folgt die Behauptung.

Richtig? Vielleicht etwas sehr ausführlich. Die Musterlösung ist da sehr viel kürzer. Stimmt meine Lösung dennoch?

        
Bezug
Eigenwerte + unitärer VR: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Di 17.02.2009
Autor: fred97

Prima, alles richtig !!

Hattet Ihr schon, dass selbstadjungierte Abbildungen nur reelle Eigenwerte haben ?

Wenn ja, so kann man obige Beh. ganz kurz beweisen:

Sei also $ [mm] \Phi^{+} [/mm] $ = $ [mm] -\Phi. [/mm] $. Setze [mm] $\Psi [/mm] = i [mm] \Phi$ [/mm]

Dann ist [mm] \Psi^+ [/mm] = [mm] \Psi, [/mm]    

[mm] \Psi [/mm] hat also nur reelle Eigenwerte. Was folgt dann wohl für  [mm] \Phi [/mm] ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]