www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwerte, Eigenvektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte, Eigenvektoren
Eigenwerte, Eigenvektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte, Eigenvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:35 Sa 24.02.2007
Autor: KnockDown

Hi,


[Dateianhang nicht öffentlich]


diese Aufgabe hatte ich schon mal gerechnet und die müsste auch stimmen (Teil a)).

Jetzt habe ich bin ich mir bei b) bei meiner Antwort nicht sicher.


Ich würde sagen, dass es keine zwei Eigenvektoren geben kann, die senkrecht aufeinander stehen mit dem selben Eigenwert , da der Eigenwert angibt, um welchen Faktor ein Vektor gestreckt oder gestaucht wurde.

Prinzipiell würde ich sagen, wenn die Eigenvektoren nicht den selben Eigenwert haben, könnte es möglich sein, dass es das gibt oder? -- In einem Konkreten Fall könnte man alle Eigenvektoren einer Matrix mit dem Skalarprodukt daraufhin überprüfen ob sie senkrecht aufeinander stehen (Skalarprodukt der beiden Vektoren = 0 --> dann senkrecht)


Was sagt ihr dazu?



Danke für die HIlfe


Gruß Thomas

Dateianhänge:
Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
        
Bezug
Eigenwerte, Eigenvektoren: Lösungsweg
Status: (Antwort) fertig Status 
Datum: 10:59 Sa 24.02.2007
Autor: Marvin

Ganz so einfach ist das nicht. Es kann ja immer mehrere Eigenvektoren zu einem Eigenwert geben, die linear unabhängig sind. Sonst macht der Begriff Eigenraum ja gar keinen Sinn. Und in einem Eigenraum mit dim [mm] \ge [/mm] 2 kann mensch dann auch im Eigenraum zwei orthogonale Vektoren konstruieren, die dann ja wieder Eigenvektoren sein müssen.
Für dein Beispiel würde ich zuerst konkret die Eigenvektoren berechnen. Für [mm] \lambda [/mm] = -2 folgendermaßen:

B = A - (-2) [mm] E_3=\pmat{ -8 & -2 & -16 \\ 8 & 2 & 16 \\ 4 & 1 & 8 } [/mm]

Der Lösungsraum von B [mm] \cdot [/mm] x = 0 entspricht dem Eigenraum von A zu [mm] \lambda. [/mm]

Offensichtlich sind alle Zeilen linear abhängig und die Matrix B lässt sich umformen zu:

[mm] \pmat{ -8 & -2 & -16 \\ 0 & 0 & 0 \\ 0 & 0 & 0 } [/mm]

Das führt zur Gleichung: [mm] -8x_1 [/mm] - [mm] 2x_2 [/mm] - [mm] 16x_3 [/mm] = 0  [mm] \gdw 4x_1 [/mm] + [mm] x_2 [/mm] + [mm] 8x_3 [/mm] =0 [mm] (\*) [/mm]

Eine mögliche Lösung für die Gleichung ist der Vektor v = [mm] \vektor{-2 \\ 0 \\ 1}. [/mm] Dann berechnest du das Skalarprodukt von v mit einem unbestimmten Vektor w und erhältst:
[mm] -2w_1 [/mm] + [mm] w_3 [/mm] = 0 [mm] (\* \*) [/mm]
Und dann berechnest du die Lösung des linearen Gleichungssystems von [mm] (\*) [/mm] und [mm] (\* \*). [/mm] Und damit hast du einen Eigenvektor zu -2, der orthogonal (senkrecht) zu einem anderen Eigenvektor v von -2 steht.

Ich hab jetzt schon viel zu viel vorgemacht, glaube ich. Ich hoffe, du rechnest das alles wirklich selbst nochmal nach.

Liebe Grüße,
Marvin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]