www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwerte und -vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte und -vektoren
Eigenwerte und -vektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte und -vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 So 17.01.2010
Autor: phyma

Aufgabe
Bestimme die Eigenwerte und -vektoren folgender Matrix:
[mm] $A:=\pmat{ 2/3 & -1/4 & -1/4 \\ -1/4 & 2/3 & -1/4 \\ -1/4 & -1/4 & 2/3}$. [/mm]

Hallo,
die Eigenwerte haben ich über das charakteristische Polynom ausgerechnet und bekomme:
[mm] $\lambda_1 [/mm] = 1/6$, [mm] $\lambda_2=11/12=\lambda_3$ [/mm]

Als ersten Eigenvektor bekomme ich [mm] $\vec{x}_1=\vektor{1 \\ 1 \\ 1}$. [/mm]
Beim zweiten habe ich ein Problem. Ich erhalte ja dann eine Blockmatrix aus lauter Einsen und damit als einzige Gleichung (wenn [mm] $x_1, x_2, x_3$ [/mm] die drei Einträge meines zweiten Eigenvektors [mm] $\vec{x}_2$ [/mm] sind): [mm] $x_1 [/mm] + [mm] x_2 [/mm] + [mm] x_3 [/mm] = 0$
Kann ich jetzt einfach [mm] $x_1$ [/mm] und [mm] $x_2$ [/mm] beliebig (z.B. auf 1) setzen und erhalte dann so [mm] $x_3$? [/mm] Oder wie muss ich das hier dann machen?
Wie ist das mit einem dritten Eigenvektor? Gibt es den überhaupt?

Vielen Dank schon im Voraus
phyma

        
Bezug
Eigenwerte und -vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 So 17.01.2010
Autor: MathePower

Hallo phyma,

> Bestimme die Eigenwerte und -vektoren folgender Matrix:
>  [mm]A:=\pmat{ 2/3 & -1/4 & -1/4 \\ -1/4 & 2/3 & -1/4 \\ -1/4 & -1/4 & 2/3}[/mm].
>  
> Hallo,
>  die Eigenwerte haben ich über das charakteristische
> Polynom ausgerechnet und bekomme:
>  [mm]\lambda_1 = 1/6[/mm], [mm]\lambda_2=11/12=\lambda_3[/mm]
>  
> Als ersten Eigenvektor bekomme ich [mm]\vec{x}_1=\vektor{1 \\ 1 \\ 1}[/mm].
>  
> Beim zweiten habe ich ein Problem. Ich erhalte ja dann eine
> Blockmatrix aus lauter Einsen und damit als einzige
> Gleichung (wenn [mm]x_1, x_2, x_3[/mm] die drei Einträge meines
> zweiten Eigenvektors [mm]\vec{x}_2[/mm] sind): [mm]x_1 + x_2 + x_3 = 0[/mm]
>  
> Kann ich jetzt einfach [mm]x_1[/mm] und [mm]x_2[/mm] beliebig (z.B. auf 1)
> setzen und erhalte dann so [mm]x_3[/mm]? Oder wie muss ich das hier
> dann machen?
>  Wie ist das mit einem dritten Eigenvektor? Gibt es den
> überhaupt?


Aus einer Gleiuchung in drei Variablen
kannst Du 2 Variable beliebig wählen.

Löse die Gleichung

[mm]x_{1}+x_{2}+x_{3}=0[/mm]

nach [mm]x_{3}[/mm] auf.

Setze dann [mm]x_{1}=s, \ x_{2}=t[/mm]

Dann erhältst Du

[mm]\pmat{x_{1} \\ x_{2} \\ x_{3}}=s*\pmat{ ... \\ ... \\ ...}+t*\pmat{ ... \\ ... \\ ...}[/mm]

Die Vektoren, die bei den Parametern s bzw.t stehen,
sind jetzt die gesuchten 2 Eigenvektoren.


>  
> Vielen Dank schon im Voraus
>  phyma


Gruss
MathePower

Bezug
                
Bezug
Eigenwerte und -vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 So 17.01.2010
Autor: phyma

Ok, danke - aber wie bekomme ich dann die beiden Vektoren?

Stimmt das so, wie es folgt?:
[mm] $\vektor{x1\\x2\\x3}=\vektor{s\\t\\-s-t}=s*\vektor{1\\0\\-1} [/mm] + [mm] t*\vektor{0\\1\\-1}$ [/mm]
[mm] $\Rightarrow \vec{x}_2=\vektor{1\\0\\-1}, \vec{x}_3=\vektor{0\\1\\-1}? [/mm]

Dankeschön.

Bezug
                        
Bezug
Eigenwerte und -vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 So 17.01.2010
Autor: MathePower

Hallo phyma,

> Ok, danke - aber wie bekomme ich dann die beiden Vektoren?
>  
> Stimmt das so, wie es folgt?:
>  
> [mm]\vektor{x1\\x2\\x3}=\vektor{s\\t\\-s-t}=s*\vektor{1\\0\\-1} + t*\vektor{0\\1\\-1}[/mm]
>  
> [mm]$\Rightarrow \vec{x}_2=\vektor{1\\0\\-1}, \vec{x}_3=\vektor{0\\1\\-1}?[/mm]


Stimmt. [ok]


>  
> Dankeschön.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]