www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwerte und Eigenvektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte und Eigenvektoren
Eigenwerte und Eigenvektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte und Eigenvektoren: Existenz von Eigenvektoren
Status: (Frage) beantwortet Status 
Datum: 11:09 Di 24.06.2008
Autor: schlumpfinchen123

Hallo,

bei mir im Skript steht folgender Satz über die Existenz von Eigenvektoren:

Zu einer Matrix A [mm] \in M_n_n(K) [/mm] gibt es genau dann einen Eigenvektor zum Eigenwert [mm] \lambda, [/mm] wenn [mm] \lambda [/mm] Nullstelle des charakteristischen Polynoms [mm] \chi_A [/mm] ist.

Jetzt meine Frage dazu:

Bedeutet das mit anderen Worten, dass es immer wenn eine Matrix einen Eigenwert besitzt es dazu auch Eigenvektoren gibt. Da ja Eigenwerte Nullstellen des charakteristischen Polynoms sind???
Und das eine Matrix nur dann keine Eigenvektoren hat, wenn sie auch keine Eigenwerte besitzt??

Wäre nett, wenn mir jemand weiterhelfen könnte!!
Viele Grüße, S.

        
Bezug
Eigenwerte und Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:26 Di 24.06.2008
Autor: koepper

Hallo,

> Zu einer Matrix A [mm]\in M_n_n(K)[/mm] gibt es genau dann einen
> Eigenvektor zum Eigenwert [mm]\lambda,[/mm] wenn [mm]\lambda[/mm] Nullstelle
> des charakteristischen Polynoms [mm]\chi_A[/mm] ist.
>  
> Jetzt meine Frage dazu:
>  
> Bedeutet das mit anderen Worten, dass es immer wenn eine
> Matrix einen Eigenwert besitzt es dazu auch Eigenvektoren
> gibt. Da ja Eigenwerte Nullstellen des charakteristischen
> Polynoms sind???

ja.

>  Und das eine Matrix nur dann keine Eigenvektoren hat, wenn
> sie auch keine Eigenwerte besitzt??

ja.

> Wäre nett, wenn mir jemand weiterhelfen könnte!!

wenn's weiter nichts war...
Zu einem einzigen Eigenwert kann es maximal so viele linear unabhängige Eigenvektoren geben, wie die Vielfachheit der Nullstelle im char. Polynom. Man nennt die auch "algebraische Vielfachheit". Die Anzahl der linear unabhängigen Eigenvektoren zu diesem Eigenwert (und damit die Dimension des sog. Eigenraums) nennt man geometrische Vielfachheit.

>  Viele Grüße, S.

LG
Will

Bezug
                
Bezug
Eigenwerte und Eigenvektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:35 Di 24.06.2008
Autor: schlumpfinchen123

Vielen Dank nochmal und viele Grüße!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]