www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperEin angeordneter Körper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Ein angeordneter Körper
Ein angeordneter Körper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ein angeordneter Körper: Bestimmen von a
Status: (Frage) beantwortet Status 
Datum: 19:59 So 28.11.2010
Autor: FGB

Aufgabe
Sei (K, +, · , ≤ ) ein angeordneter Körper. Zeigen Sie, dass
(a)  Für alle a ∈ K mit a > 0 gilt − a < 0.
(b)  Für alle a ∈ K gilt a² ≥ 0.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo zusammen,

ich soll zeigen, dass (a) für alle a Element von K mit a > 0 gilt, dass -a < 0 ist.
Ich stelle mir das eigentlich sehr einfach vor, jedoch traue ich meiner kurzen "Lösung" nicht wirklich.

Mein Ansatz (a):
-a ist doch das Inverse zu a. Sprich a + (-a) müsste doch 0 sein. Wenn jetzt a > 0 ist, muss doch daraus folgern, dass -a < 0 ist, sofern natürlich a [mm] \not= [/mm] 0 ist.
Ich traue meinen Ansatz einfach nicht, da ich so etwas ja grundsätzlich zeigen könnte, also egal ob es ein Körper oder einfach nur "Zahlen" sind.

Für Aufgabenstellung b dachte ich einfach:

a * a = a². Egal ob a > 0, oder < 0 ist, a² ist immer > 0.
Aber das ist mathematisch gesehen sicherlich nicht ausreichend. Mir fehlt hier eine Idee das richtig zu zeigen.


Hätte mir jemand einen Tipp? Ich wäre euch sehr dankbar für einen Denkanstoß.

Grüße und noch einen schönen Sonntag Abend,
Felix

        
Bezug
Ein angeordneter Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 03:26 Mo 29.11.2010
Autor: felixf

Moin Felix!

> Sei (K, +, · , ≤ ) ein angeordneter Körper. Zeigen Sie,
> dass
>  (a)  Für alle a ∈ K mit a > 0 gilt − a < 0.

>  (b)  Für alle a ∈ K gilt a² ≥ 0.
>  
> ich soll zeigen, dass (a) für alle a Element von K mit a >
> 0 gilt, dass -a < 0 ist.
>  Ich stelle mir das eigentlich sehr einfach vor, jedoch
> traue ich meiner kurzen "Lösung" nicht wirklich.

Da hast du auch Recht mit. So etwas soll ueber Axiome gezeigt werden. Du musst mit den Axiomen, die ihr habt, arbeiten, und daraus die Aussagen herleiten. (Du darfst natuerlich Aussagen aus der Vorlesung, die ihr dort schon bewiesen hattet, ebenfalls verwenden und nicht nur die Axiome.)

Da wir allerdings nicht wissen, was ihr an Axiomen und Aussagen hattet, koennen wir dir so direkt erstmal nicht helfen (es sei denn du verraetst uns welche ihr hattet)..


Ein moegliches Axiom (oder Aussage) lautet zum Beispiel: "Gilt $a [mm] \le [/mm] b$, so auch $a + c [mm] \le [/mm] b + c$"

Und ein weiteres kann moeglicherweise lauten: "Gilt $0 [mm] \le [/mm] a$ und $0 [mm] \le [/mm] b$, so auch $0 [mm] \le [/mm] a b$"

(Das sind die Axiome von []hier; es kann aber gut sein, dass ihr andere hattet.)


Ist jetzt etwa $0 [mm] \le [/mm] a$, so folgt aus dem ersten $0 + -a [mm] \le [/mm] a + -a$, also $-a [mm] \le [/mm] 0$. Und ist $a [mm] \neq [/mm] 0$, so auch $-a [mm] \neq [/mm] 0$. Daraus folgt: ist $0 < a$, so auch $-a < 0$.

So, jetzt bist du dran.

LG Felix


Bezug
                
Bezug
Ein angeordneter Körper: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:17 Mo 29.11.2010
Autor: FGB

Hallo Felix!

ERst einmal vielen Dank!

Du hast recht, wir haben die Aussage, dass

Für alle a,b,c [mm] \in [/mm] K : a <= b => a+c <= b+c

und

Für alle a,b,c [mm] \in [/mm] K : (a <= b und 0k <= c) => ac <= bc

Ich versuche gerade anhand der ersten Aussage die Aufgabe a zu zeigen.

Hmmm

Vielleicht wenn ich sage,

-a <= a <= b. Daraus irgendwie folgern,
dass 0 + (-a) < 0 + a ist. Somit ist 0 [mm] \not= [/mm] a und -a < 0 und a > 0.
Aber ausreichend gezeigt ist das ja auch nicht. Ich probiere noch weiter rum. Schon einmal vielen Dank!



// Nachtrag:
Wenn ich sage, a+c <= b+c, und ich sage, a+(-a)=0 (inverse),
dann müsste doch, sofern ich das inverse hinzuaddiere (sofern das geht)

a+(-a)+c<=b+(-a)+c = 0+c<=b-a+c.
Das stimmt ja so, glaub ich.

Wenn ich durch Widerspruch sage, -a > 0, dann stimmt das doch nicht mehr:

a+(-a)+c<=b+(-a)+c -> hier ist a+(-a) [mm] \not= [/mm] null oder?

Mein Tutor versucht das zu erklären ... aber ich blicke es nicht :-8(

// Nachtrag 2:

Ich habe es nochma lversucht durch Widerspruch: -a > 0

Für alle a,b,c [mm] \in [/mm] K a+b <= b+c

Wenn -a > 0, dann 0+0<a+(-a)
Dann a+(-a) = 0 (def von inversen), stimmt das nicht.
Also stimmt es nicht, dass -a > 0 ist.
Reicht das?

Hänge auch gerade an der b. Komme einfach nicht drauf. Tue mich da so schwer

Bezug
                        
Bezug
Ein angeordneter Körper: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:23 Mi 01.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]