www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikEinfache Erwartungswertaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Einfache Erwartungswertaufgabe
Einfache Erwartungswertaufgabe < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einfache Erwartungswertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:47 Mo 14.08.2006
Autor: MrPink

Hallo, ich habe folgende Aufgabe und einen Ansatz. Ich weiss nur nicht wie ich meinen Ansatz zur vollständigen Lösung ausbauen kann. Ich muss den Erwartungswert des gewinns berechnen.

[Dateianhang nicht öffentlich]

Mein Ansatz

[Dateianhang nicht öffentlich]

Wie komme ich nun von hier ( falls es bis hier überhaupt richtig ist ) auf den Erwartungswert ?

Vielen Dank Voraus

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
        
Bezug
Einfache Erwartungswertaufgabe: "Idee"
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:04 Mo 14.08.2006
Autor: JannisCel

Du hast ja schon die richtige Formel für die W'keit und zur Berechnung des Erwartungswertes. Fasse das Binomialdingens als dein p in der Summe auf und das i als Anzahl der Köpfe.

Bezug
        
Bezug
Einfache Erwartungswertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Mo 14.08.2006
Autor: DirkG

Es liegt ein zweistufiges Experiment vor mit den Zufallsgrößen

$X$ ... Anzahl Kopf in der ersten Versuchsreihe
$G$ ... Gesamtgewinn in der zweiten Versuchsreihe

Was du zum Gewinn schon richtig hingeschrieben hast, ist die bedingte Erwartung des Gewinns unter der Bedingung X=k, in Formeln:
$$E( G [mm] \bigm| [/mm] X=k) = [mm] \sum\limits_{i=1}^k [/mm] ~ [mm] p\cdot [/mm] i = [mm] p\cdot \sum\limits_{i=1}^k [/mm] ~ i = [mm] \frac{p}{2}k(k+1)$$ [/mm]
Über alle $k$ gemittelt wird gemäß
$$E(G) = [mm] \sum\limits_{k=0}^n [/mm] ~ E( G [mm] \bigm| X=k)\cdot [/mm] P(X=k) .$$
Nun kann man die entstehende Summe vereinfachen, wenn man
[mm] $$\sum\limits_{k=0}^n [/mm] ~ kP(X=k) = E(X) = np$$
sowie
[mm] $$\sum\limits_{k=0}^n [/mm] ~ k^2P(X=k) = [mm] E(X^2) [/mm] = [mm] \operatorname{var}(X)+(E(X))^2 [/mm] = [mm] np(1-p)+n^2p^2$$ [/mm]
berücksichtigt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]