www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeEinfache Extremwertprobleme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Extremwertprobleme" - Einfache Extremwertprobleme
Einfache Extremwertprobleme < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einfache Extremwertprobleme: Frage
Status: (Frage) beantwortet Status 
Datum: 12:27 Di 23.11.2004
Autor: carina1987

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wir haben neu mit dem Thema "Extremwertprobleme" angefangen.Wir sollen ein paar aufgaben bearbeiten, nur leider verstehe ich kein einziges Wort von dem was im Mathebuch steht.Es wäre lieb, wenn mir jemand die Aufgaben so erklären könnte,dass ich sie verstehe.

1. Die Punkte A(-u/0), B(u/0), C(u/f(u)), D(-u/F(-u)), 0<u<3, des Graphen von f mit [mm] f(x)=-x^2+9 [/mm] bilden ein Rechteck. Für welches u wird der Flächeninhalt (Umfang) des Rechtecks ABCD maximal? Wie gross ist der maximale Inhalt (Umfang)?

2.Die Punkte O(0/0), P(5/0), Q(5/f(5)), R(u/f(u)) und S(0/f(0)) des Graphen von f mit f(x)=- [mm] 0,05x^3+x+4; [/mm] 0<x<5, bilden ein Fünfeck. Für welches u wird sein Inhalt maximal?

        
Bezug
Einfache Extremwertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 13:55 Di 23.11.2004
Autor: Sigrid

Hallo Carina,
versuche bitte bei deinen Fragen, etwas konkreter zu sagen, wo dein Problem liegt. Dann ist es für uns leichter, die passenden Antworten zu geben.
Ich gebe dir jetzt erst einmal ein paar Tipps für die erste Aufgabe. Melde dich, wenn du damit noch nicht klarkommst.

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Wir haben neu mit dem Thema "Extremwertprobleme"
> angefangen.Wir sollen ein paar aufgaben bearbeiten, nur
> leider verstehe ich kein einziges Wort von dem was im
> Mathebuch steht.Es wäre lieb, wenn mir jemand die Aufgaben
> so erklären könnte,dass ich sie verstehe.
>  
> 1. Die Punkte A(-u/0), B(u/0), C(u/f(u)), D(-u/F(-u)),
> 0<u<3, des Graphen von f mit [mm]f(x)=-x^2+9[/mm] bilden ein
> Rechteck. Für welches u wird der Flächeninhalt (Umfang) des
> Rechtecks ABCD maximal? Wie gross ist der maximale Inhalt
> (Umfang)?
>

Znächst mal zum Flächeninhalt:
Ich denke, du hast dir schon eine Zeichnung gemacht.
Nenne nun die Seite des Rechtecks, die auf der x-Achse liegt, a. Die andere Seite nennst du dann b. Der Flächeninhalt ist
[mm] A = a \cdot b [/mm].

Dann siehst du an der Zeichnung, dass a = 2u und b=f(u). (Dies ist die sogenannte Nebenbedingung)
Durch Einsetzen in die Formel von A erhälst du
[mm] A = A(u) = 2u \cdot f(u) = 2 u (-u^2 + 9) [/mm]

Von dieser Funktion kannst du mit dem dir bekannten Verfahren das Maximum bestimmen.
Wenn du diesen Lösungsansatz verstanden hast, kannst du sicher auch den maximalen Umfang bestimmen.

> 2.Die Punkte O(0/0), P(5/0), Q(5/f(5)), R(u/f(u)) und
> S(0/f(0)) des Graphen von f mit f(x)=- [mm]0,05x^3+x+4;[/mm] 0<x<5,
> bilden ein Fünfeck. Für welches u wird sein Inhalt
> maximal?

Hier ein Tipp für den Ansatz: Zeichne eine Parallele zur y-Achse durch R. Du hast dann ein Dreieck und ein Trapez. Zunächst höre ich hier einmal auf. Vielleicht kommst du schon alleine weiter, wenn du die erste Aufgabe verstanden hast

Gruß Sigrid


Bezug
                
Bezug
Einfache Extremwertprobleme: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:25 Di 23.11.2004
Autor: carina1987

Ersteimal vielen liebe Dank.Ich konnte meine Frage leider nicht konkreter stellen,weil ich wirklich garnichts verstehe.Wir haben ganz neu mit dem Thema angefangen, und dabei nur eine Beispielaufgabe von unserem Lehrer bekommen.Alles weitere sollen wir uns selbst beibringen. Aber ich habe versucht mit dem Ansatz weiter zu arbeiten.Da ich noch sehr unsicher bin wäre es schön, wenn ich eine kleine Antwort zu meinem Rechenweg bekommen könnte.Ich habe mit dem Ansatzt so weiter gearbeitet:

Maximum bestimmen
A'(u)=2(-2u)
A'(u)=0
0=2-2u       / +2u, :2
u=1
hin. Bedingung
A''(u) [mm] \not= [/mm] 0
ab da bin ich nicht mehr weiter gekommen.Irgendetwas hab ich falsch gemacht

Bezug
                        
Bezug
Einfache Extremwertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Di 23.11.2004
Autor: Sigrid


> Ersteimal vielen liebe Dank.Ich konnte meine Frage leider
> nicht konkreter stellen,weil ich wirklich garnichts
> verstehe.

Das habe ich schon fast vermutet. Aber keine Sorge, ich helfe dir weiter.

> Wir haben ganz neu mit dem Thema angefangen, und
> dabei nur eine Beispielaufgabe von unserem Lehrer
> bekommen.Alles weitere sollen wir uns selbst beibringen.
> Aber ich habe versucht mit dem Ansatz weiter zu arbeiten.Da
> ich noch sehr unsicher bin wäre es schön, wenn ich eine
> kleine Antwort zu meinem Rechenweg bekommen könnte.Ich habe
> mit dem Ansatzt so weiter gearbeitet:
>  
> Maximum bestimmen
>  A'(u)=2(-2u)

Halt! So darfst du nicht ableiten. Du musst den Funktionsterm erst ausmultiplizieren.
Also
[mm] A(u) = 2u (-u^2+9) = -2u^3 +18u [/mm]

Die Nullstellen der Ableitung sind
[mm] u = \wurzel{3} \vee u = - \wurzel{3}[/mm],  (bitte nachrechnen!)
wobei die negative Lösung keinen Sinn macht, da für u gelten muss:  0<=u<=3 .


>  A'(u)=0
>  0=2-2u    (hier hast  du dich auch verrechnet, aber das spielt jetzt keine Rolle mehr)   / +2u, :2
>  u=1
>  hin. Bedingung
>  A''(u) [mm]\not=[/mm] 0
>  ab da bin ich nicht mehr weiter gekommen.Irgendetwas hab
> ich falsch gemacht
>  

Ich denke, jetzt bekommst du es hin, sonst melde dich.

Gruß Sigrid


Bezug
                                
Bezug
Einfache Extremwertprobleme: rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:44 Mo 19.02.2007
Autor: malinchen

hallo,
genau dieselbe aufgabe muss ich nun auch bearbeiten. soweit verstenhe ich alles nur warum a= 2u ist nicht. Wo kommt denn das u her?

Bezug
                                        
Bezug
Einfache Extremwertprobleme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 Mo 19.02.2007
Autor: malinchen

es tut mir leid aber ich habe noch eine frage. man hat ja mit der Lösung [mm] \wurzel{3} [/mm] noch nicht den maximalen Flächeninhalt. und wie geht dann das ganze mit dem Umfang?
                                    vielen Dank im voraus!

Bezug
                                                
Bezug
Einfache Extremwertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 Mo 19.02.2007
Autor: Steffi21

Hallo,

bei [mm] u=\wurzel{3} [/mm] maximaler Flächeninhat, dann: der Umfang U setzt sich zusammen aus [mm] U=4*u+2*f(u)=4*\wurzel{3}+2*(-\wurzel{3}^{2}+9)=4*\wurzel{3}+2*6 [/mm]

[Dateianhang nicht öffentlich]

Steffi

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                                                        
Bezug
Einfache Extremwertprobleme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:18 Mo 19.02.2007
Autor: malinchen

hi steffi,
danke!! ich muss nur die antwort auf meine ertse frage abwarten um damit sinnvoll weitermachen zu könne. aber das wir mir dan sicher weiterhelfen.
                                        malinchen

Bezug
                                                        
Bezug
Einfache Extremwertprobleme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 Mo 19.02.2007
Autor: malinchen

aber es muss dich 2 mal a + 2 mal b sein und nicht 4 mal u + 2 mal f(u)???

Bezug
                                                                
Bezug
Einfache Extremwertprobleme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:38 Mo 19.02.2007
Autor: malinchen

sorry hat sich geklärt!! hab bloß was übersehen

Bezug
                                                                
Bezug
Einfache Extremwertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Mo 19.02.2007
Autor: Steffi21

Hallo,

schau dir mal mein Bild an: für [mm] u=\wurzel{3}=1,73 [/mm] wird der Flächeninhalt maximal, wenn du für diese Fall den Umfang ausrechnest, geht doch die Breite von -1,73 bis 0 (das ist ein u) und von 0 bis 1,73 (das ist noch ein u) ebenso die Breite auf der Oberseite des Rechtecks, also gibt es u insgesamt 4 mal.

Beachte aber, wenn du einen maximalen Umfang haben möchtest, nimmst du die 1. Ableitung von Angela, setzt diese gleich Null, für u=1 wird dann der Umfang maximal, du erreichst aber keinen maximalen Flächeninhalt,

steffi

Bezug
                                                
Bezug
Einfache Extremwertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Mo 19.02.2007
Autor: angela.h.b.


> es tut mir leid aber ich habe noch eine frage. man hat ja
> mit der Lösung [mm]\wurzel{3}[/mm] noch nicht den maximalen
> Flächeninhalt.

Hallo,

nein, [mm] \wurzel{3} [/mm] ist die Stelle, an welcher man bei den vorgegebenen Bedingungen ein Rechteck größtmöglichen Inhaltes erhält, nämlich, indem man die Punkte A,B,C,D so wählt: [mm] A=(-\wurzel{3},0), [/mm] B=..., [mm] C=(\wurzel{3},6), [/mm] D=....

Wie groß der maximale Flächeninhalt ist, bekommst Du heraus, indem Du [mm] u=\wurzel{3} [/mm] in A(u) einsetzt.


> und wie geht dann das ganze mit dem Umfang?

Um herauszufinden, für welches u der Umfang maximal wird, mußt Du eine zweite Extremwertaufgabe lösen.

Der Umfang berechnet sich ja, indem man die 4 Seitenlängen addiert, also (mit Sigrids a und b)

[mm] U(u)=2a+2b=2*(2u)+2*(f(u))=4u-2u^2+18. [/mm]

Nun das übliche procedere mit Ableiten usw.

Gruß v. Angela



Bezug
                                                        
Bezug
Einfache Extremwertprobleme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Mo 19.02.2007
Autor: malinchen

aber angela wie kommst du denn bei der herleitung von U= 2a + 2b auf -2u² +18

Bezug
                                                                
Bezug
Einfache Extremwertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Mo 19.02.2007
Autor: Steffi21

Hallo,

die  Breite ist 2u
die Länge (Höhe) ist f(u)

U=2*2u + 2*f(u), für f(u) setzt du u für x in die Funktionsgleichung ein
U=4u + [mm] 2*(-u^{2}+9) [/mm]
U=4u - [mm] 2u^{2} [/mm] + 18

jetzt klar(er)?

Steffi







Bezug
                                                                        
Bezug
Einfache Extremwertprobleme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:11 Mo 19.02.2007
Autor: malinchen

ja danke. der lösungsweg schon. aber ich hab die lösungen ohne den weg und die stimmen nicht mit dem überein was ich bis jetzt raushabe. ich habe bis jetzt aber denke ich mit eurer hilfe doch alles richtig gemacht.die lösungen lauten:

A= x(-x²+9) wird maximal für x [mm] =\wurzel{3}; [/mm] A(max) =
[mm] 6\wurzel{3}; [/mm] A(0)=A(3)= 0
U= 2(x+9-x²) wird maximal für x= [mm] \bruch{1}{2}; [/mm] U(max)= 18,5; U(0)= 18; U(3)= 6(sbsolutes extrema)

Bezug
                                                                                
Bezug
Einfache Extremwertprobleme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:49 Mo 19.02.2007
Autor: Steffi21

Hallo,

Wo hast du diese Lösungen her?
Diese Lösungen passen nicht zu deiner Aufgabenstellung!!

Dann würdest du nur das halbe Rechteck untersuchen, A(0;0) und D(0; f(u)), in der Aufgabestellung sind diese Punkte aber anders angegeben!!

Steffi




Bezug
                                                                                        
Bezug
Einfache Extremwertprobleme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 Di 20.02.2007
Autor: malinchen

die lösungen hab ich von jemandem aus dem lösungsbuch bekommen.

Bezug
                                        
Bezug
Einfache Extremwertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Mo 19.02.2007
Autor: angela.h.b.


>
> soweit verstenhe ich alles nur warum a= 2u ist nicht. Wo
> kommt denn das u her?

Hallo,

[willkommenmr].

Du betrachtest ja das Rechteck, welches durch die Punkte A,B,C,D gegeben ist.

a hatte Sigrid die Seite des Rechtecks genannt, welche auf der x-Achse liegt, also den Abstand zwischen A und B.
A=(-u,0), B=(u,0).

Also erstreckt sich a auf der x-Achse von -u bis u und somit ist a=2u.

Gruß v. Angela

Bezug
                                                
Bezug
Einfache Extremwertprobleme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mo 19.02.2007
Autor: malinchen

Danke Angela!!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]