www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationEinfache Integralberechnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Einfache Integralberechnung
Einfache Integralberechnung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einfache Integralberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:18 Di 02.06.2009
Autor: kegel53

Hallo MatheRaum-Team,
ich steh grad auf der Leitung. Kann mir jemand kurz sagen wie ich das Integral [mm] \int cos^2(x) [/mm] dx berechne? Vielen Dank.

        
Bezug
Einfache Integralberechnung: 2 Wege
Status: (Antwort) fertig Status 
Datum: 19:22 Di 02.06.2009
Autor: Loddar

Hallo Kegel!


Entweder wendest Du hier partielle Integration für [mm] $\cos^2(x) [/mm] \ = \ [mm] \cos(x)*\cos(x)$ [/mm] an.


Oder Du wendest folgendes Additionstheorem an:
[mm] $$\cos^2(x) [/mm] \ = \ [mm] \bruch{1}{2}*\left[\cos(2x)+1\right]$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Einfache Integralberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Di 02.06.2009
Autor: kegel53

Alles klar mit dem Additionstheorem funktioniert das wunderbar. Nur durch partielle Integration komm ich nicht weiter, da ich dann beim zweiten Mal partiell integrieren wieder denselben Ausdruck dastehn habe wie zuvor nämlich [mm] ...+\int cos^2(x). [/mm] Wär super wenn man mir noch den anderen Weg zum Berechnen des Integrals erklären könnte. Danke schon mal.

Bezug
                        
Bezug
Einfache Integralberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Di 02.06.2009
Autor: Marcel

Hallo,

> Alles klar mit dem Additionstheorem funktioniert das
> wunderbar. Nur durch partielle Integration komm ich nicht
> weiter, da ich dann beim zweiten Mal partiell integrieren
> wieder denselben Ausdruck dastehn habe wie zuvor nämlich
> [mm]...+\int cos^2(x).[/mm] Wär super wenn man mir noch den anderen
> Weg zum Berechnen des Integrals erklären könnte. Danke
> schon mal.

[mm] $$\int \cos^2(x)\;dx=\int \underbrace{\cos(x)}_{=u(x)}*\underbrace{\cos(x)}_{=v'(x)}\;dx=[\cos(x)*\sin(x)]-\int \big(-\sin(x)\big)*\sin(x)\;dx=[\sin(x)*\cos(x)]+\int \sin^2(x)\;dx$$ [/mm]
[mm] $$\blue{\underset{\substack{\text{beachte: }\displaystyle \sin^2(x)=1-\cos^2(x) \text{ und }\\ \displaystyle \integral (1-\cos^2(x))\;dx=\displaystyle \int 1\;dx-\int \cos^2(x)\;dx}}{=}}\displaystyle [\sin(x)*\cos(x)]+\int 1\;dx -\int \cos^2(x)\;dx\,$$ [/mm]
[mm] $$\green{\underset{\text{bea.: }\displaystyle\int 1\;dx=x}{\Longrightarrow}}$$ [/mm]
[mm] $$\int \cos^2(x)\;dx=[\sin(x)*\cos(x)]+x-\int \cos^2(x)\;dx$$ [/mm]
[mm] $$\gdw$$ [/mm]
$$2 [mm] \int \cos^2(x)\;dx=\sin(x)*\cos(x)+x$$ [/mm]
[mm] $$\gdw$$ [/mm]
[mm] $$\int \cos^2(x)\;dx=\frac{1}{2}\big(\sin(x)*\cos(x)+x\big)\,.$$ [/mm]

Anders gesagt:
$$F: [mm] \IR \to \IR\;\; \text{ definiert durch }\;\;F(x):=\frac{1}{2}\big(\sin(x)*\cos(x)+x\big)\;\;\;\;(x \in \IR)$$ [/mm]
ist eine Stammfunktion (oder ein Repräsentant der Klasse der Stammfunktionen) von
$$f: [mm] \IR \to \IR\;\; \text{ definiert durch }\;\;f(x):=\cos^2(x)\;\;\;\;(x \in \IR)\,.$$ [/mm]

Wenn Du magst, kannst Du oben auch Konstanten (genauer: konstante Funktionen!) in der Rechnung ergänzen, um damit dann alle Stammfunktionen von [mm] $f\,$ [/mm] anzugeben.

Gruß,
Marcel

Bezug
                                
Bezug
Einfache Integralberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:22 Di 02.06.2009
Autor: kegel53

WOW, das nenn ich mal eine ausführliche Antwort :-). Dank dir.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]