Einheit: ab=1=ba oder ab=1 ? < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 01:51 Sa 09.02.2013 | Autor: | ThomasTT |
Aufgabe | Wenn $R$ ein Ring ist, [mm] $a\in [/mm] R$ und [mm] $\exists b\in [/mm] R$ so dass $ab=1=ba$, dann ist $a$ eine Einheit. |
Ist es nötig $ab=1=ba$ zu verlangen oder könnte man auch nur $ab=1$ verlangen? Für den kommutativen Fall ist es klar, aber was ist wenn der Ring nicht kommutativ ist?
Gibt es also [mm] $a,b\in [/mm] R$ sodass $ab=1$ und [mm] $ba\ne [/mm] 1$ ? Ich habe eine ganze Weile mit Matrizen rumprobiert, weil die ja oft für solche Dinge als Gegenbeispiel herhalten, aber es hat zu keinem Erfolg geführt. Weiß jemand eine Antwort? :/
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 03:56 Sa 09.02.2013 | Autor: | Fulla |
Hallo ThomasTT!
> Wenn [mm]R[/mm] ein Ring ist, [mm]a\in R[/mm] und [mm]\exists b\in R[/mm] so dass
> [mm]ab=1=ba[/mm], dann ist [mm]a[/mm] eine Einheit.
Ist das eure Definition von "Einheit"? Oder ist das schon ein Satz?
> Ist es nötig [mm]ab=1=ba[/mm] zu verlangen oder könnte man auch
> nur [mm]ab=1[/mm] verlangen? Für den kommutativen Fall ist es klar,
> aber was ist wenn der Ring nicht kommutativ ist?
Man spricht im Fall von [mm]ab=1[/mm] von Linkseinheit und im Fall von [mm]ba=1[/mm] von Rechtseinheit. Erst wenn [mm]ab=1=ba[/mm] heißt a Einheit.
> Gibt es also [mm]a,b\in R[/mm] sodass [mm]ab=1[/mm] und [mm]ba\ne 1[/mm] ? Ich habe
> eine ganze Weile mit Matrizen rumprobiert, weil die ja oft
> für solche Dinge als Gegenbeispiel herhalten, aber es hat
> zu keinem Erfolg geführt. Weiß jemand eine Antwort? :/
Siehe oben. Ich kenne die Definition: a ist Einheit, wenn es ein b gibt mit ab=1=ba. Damit erübrigt sich deine Frage. Solltet ihr eine andere Definition haben, poste sie doch bitte hier.
Lieben Gruß,
Fulla
|
|
|
|
|
> Wenn [mm]R[/mm] ein Ring ist, [mm]a\in R[/mm] und [mm]\exists b\in R[/mm] so dass
> [mm]ab=1=ba[/mm], dann ist [mm]a[/mm] eine Einheit.
> Ist es nötig [mm]ab=1=ba[/mm] zu verlangen oder könnte man auch
> nur [mm]ab=1[/mm] verlangen? Für den kommutativen Fall ist es klar,
> aber was ist wenn der Ring nicht kommutativ ist?
>
> Gibt es also [mm]a,b\in R[/mm] sodass [mm]ab=1[/mm] und [mm]ba\ne 1[/mm] ? Ich habe
> eine ganze Weile mit Matrizen rumprobiert, weil die ja oft
> für solche Dinge als Gegenbeispiel herhalten, aber es hat
> zu keinem Erfolg geführt. Weiß jemand eine Antwort? :/
Ein Gegenbeispiel (mit Matrizen - aber nicht endlichen)
findest du zuunterst im Artikel "Einheit (Mathematik)"
als Beispiel.
LG , Al-Chwarizmi
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 07:51 Sa 09.02.2013 | Autor: | felixf |
Moin,
> > Wenn [mm]R[/mm] ein Ring ist, [mm]a\in R[/mm] und [mm]\exists b\in R[/mm] so dass
> > [mm]ab=1=ba[/mm], dann ist [mm]a[/mm] eine Einheit.
> > Ist es nötig [mm]ab=1=ba[/mm] zu verlangen oder könnte man
> auch
> > nur [mm]ab=1[/mm] verlangen? Für den kommutativen Fall ist es klar,
> > aber was ist wenn der Ring nicht kommutativ ist?
> >
> > Gibt es also [mm]a,b\in R[/mm] sodass [mm]ab=1[/mm] und [mm]ba\ne 1[/mm] ? Ich habe
> > eine ganze Weile mit Matrizen rumprobiert, weil die ja oft
> > für solche Dinge als Gegenbeispiel herhalten, aber es hat
> > zu keinem Erfolg geführt. Weiß jemand eine Antwort? :/
>
> Ein Gegenbeispiel (mit Matrizen - aber nicht endlichen)
> findest du zuunterst im Artikel
> "Einheit (Mathematik)"
> als Beispiel.
und um das noch etwas genauer auszufuehren: wenn ein Ring $R$ endlich ist, oder wenn $R$ eine endlich-dimensionale Algebra ueber einem Koerper ist, dann ist Linkseinheit aequivalent zu Rechtseinheit aequivalent zu Nicht-Linksnullteiler aequivalent zu Nicht-Rechtsnullteiler. In solchen Ringen reicht es bei der Definition der Einheit also aus, $a b = 1$ zu fordern.
Das von Al-Chwarizmi erwaehnte Gegenbeispiel findet gerade in einem Ring statt, wo eine dieser beiden Voraussetzungen nicht erfuellt ist: es geht um eine unendlichdimensionale Algebra ueber einem Koerper.
LG Felix
|
|
|
|