www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Einheitskreis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - Einheitskreis
Einheitskreis < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einheitskreis: "Tipp","Idee"
Status: (Frage) beantwortet Status 
Datum: 10:59 Mi 21.05.2008
Autor: Cat-

Aufgabe
Berechnung der Länge des Einheitskreisbogens:

Es gilt: sin ß = AE < Bogen PE < tanß = PF
Geht man nun von einem Einheitskreisbogen B mit Zentrumswinkel ß aus, so setzt man ß = [mm] \bruch{ß}{n} [/mm]  und erhält nach Multiplikation mit n :
n * sin [mm] \bruch{\beta}{n} [/mm] < Länge B < n * tan [mm] \bruch{\beta}{n} [/mm]

Damit hat man

1. Die Länge eines Einheitskreisbogens mit Zentrumswinkel ß ist gleich ß.
2. Der Umfang des Einheitskreises ist [mm] 2\pi. [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo!

Mir ist nicht ganz klar, wie ich auf die beiden Schlussfolgerungen 1. und 2. komme.
Wie muss ich die Hauptgleichung auflösen oder umformen, kann mir Jemand helfen.

Danke !

        
Bezug
Einheitskreis: Antwort
Status: (Antwort) fertig Status 
Datum: 11:24 Mi 21.05.2008
Autor: Gnometech

Hallo!

Die Idee hier ist, die Reihenentwicklugn von Sinus und Tangens zu betrachten. Beide beginnen mit dem Term $x$ und daraus folgt, dass sich [mm] $\sin(x)$ [/mm] und [mm] $\tan(x)$ [/mm] für $x [mm] \to [/mm] 0$ asymptotisch wie die konstante Funktion $x$ verhalten.

Für $n [mm] \to \infty$ [/mm] gilt doch [mm] $\frac{\beta}{n} \to [/mm] 0$ und mit obigem folgt

[mm] $\lim_{n \to \infty} [/mm] n [mm] \cdot \sin \left( \frac{\beta}{n} \right) [/mm] = [mm] \lim_{n \to \infty} [/mm] n [mm] \cdot \frac{\beta}{n} [/mm] = [mm] \beta$ [/mm]

und für den Tangens ebenso. Da die Abschätzung für alle $n [mm] \in \IN$ [/mm] richtig ist, gilt sie (abgeschwächt) für den Limes und es folgt, dass $B$ die Länge [mm] $\beta$ [/mm] hat.

Folgerung 2 ist eine Konsequenz aus der ersten, denn ein voller Kreisbogen entspricht dem Winkel $2 [mm] \pi$. [/mm]

Gruß,
Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]