www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenEinschließungskriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Einschließungskriterium
Einschließungskriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einschließungskriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 Di 08.11.2011
Autor: Mikadostaebchen

Aufgabe
[mm] a_n=2\wurzel{n+3}-2\wurzel{n} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
für diese Folge soll die Konvergenz mittels Einschließungskriterium gezeigt und der Grenzwert berechnet werden.
Dass es sich um eine Nullfolge handelt ist ja nun recht offensichtlich.
Für das Einschließungskriterium müsste ich nun eine Folge finden die größer/gleich und eine Folge die kleiner/gleich meiner gegebenen Folge ist und ebenfalls den Grenzwert 0 hat.
Ich habe mir überlegt, dass diese Nullfolge hier kleiner ist:
[mm]\bruch{2\wurzel{n+3}}{2\wurzel{n}}-1[/mm]
Aber auf die größere Folge komme ich einfach nicht. Gibt es ein "Rezept" wie man auf diese Folgen kommt?
Vielen Dank schonmal =)

        
Bezug
Einschließungskriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Di 08.11.2011
Autor: kamaleonti

Hallo Mikadostaebchen,

    [willkommenmr]!!

> [mm]a_n=2\wurzel{n+3}-2\wurzel{n}[/mm]

Benutze

      [mm] 2\wurzel{n+3}-2\wurzel{n}=\frac{(2\wurzel{n+3}-2\wurzel{n})(2\wurzel{n+3}+2\wurzel{n})}{2\wurzel{n+3}+2\wurzel{n}}=\frac{12}{2\wurzel{n+3}+2\wurzel{n}} [/mm]

für das Einschließungskriterium.

LG

Bezug
                
Bezug
Einschließungskriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:25 Di 08.11.2011
Autor: Mikadostaebchen

Wow, vielen Dank, das ging ja schneller als ich den Browser aktualisieren konnte [mm] o_O [/mm]

Auf diese Umformung hätt ich ja echt mal selbst kommen können >.< Manchmal steht man halt echt aufm Schlauch.

Wenn ich nun [mm]b_n=\bruch{12}{2\wurzel{n}[/mm] als Folge nehme, die größer ist als mein [mm]a_n[/mm] und als Abschätzung nach unten einfach die 0, dann ist doch eigentlich die Konvergenz gegen a=0 bewiesen, oder? Denn für [mm]b_n[/mm] ist die Nullfolge ja durch n im Nenner offensichtlich, oder?



Bezug
                        
Bezug
Einschließungskriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Di 08.11.2011
Autor: fred97


> Wow, vielen Dank, das ging ja schneller als ich den Browser
> aktualisieren konnte [mm]o_O[/mm]
>  
> Auf diese Umformung hätt ich ja echt mal selbst kommen
> können >.< Manchmal steht man halt echt aufm Schlauch.
>  
> Wenn ich nun [mm]b_n=\bruch{12}{2\wurzel{n}[/mm] als Folge nehme,
> die größer ist als mein [mm]a_n[/mm] und als Abschätzung nach
> unten einfach die 0, dann ist doch eigentlich die
> Konvergenz gegen a=0 bewiesen, oder? Denn für [mm]b_n[/mm] ist die
> Nullfolge ja durch n im Nenner offensichtlich, oder?

Das hast Du alles richtig erkannt

FRED

>  
>  


Bezug
                                
Bezug
Einschließungskriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Di 08.11.2011
Autor: Mikadostaebchen

Vielen, vielen Dank nochmal!
Ich glaube so laaaaaaangsam verstehe ich das Thema. =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]