www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperEisensteinkriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Eisensteinkriterium
Eisensteinkriterium < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eisensteinkriterium: Nachfrage
Status: (Frage) beantwortet Status 
Datum: 21:01 Sa 15.09.2012
Autor: teo

Aufgabe
Eisensteinkriterium:

Sei $R$ ein faktorieller Ring und $f = [mm] \summe_{i=0}^{n}a_iX^i \in [/mm] R[x]$ von positivem Grad mit teilerfremden Koeffizienten. Gibt es ein Primelement $p [mm] \in [/mm] R$ mit $p$ teilt nicht [mm] $a_n$, [/mm] $p$ teilt [mm] $a_i$ [/mm] für alle $i [mm] \in \{0,...,n-1\}$ [/mm] und $p$ teilt nicht [mm] $a_0$, [/mm] so ist f irreduzibel in $R[x]$.


Hallo,

kurze Frage dazu: Wir haben immer bei irreduziblen Polynomen $f [mm] \in \IQ[x]$ [/mm] gezeigt, dass die in [mm] $\IZ[x]$ [/mm] nach Eisenstein irreduzibel sind und haben dann mit Gauß geschlossen, dass diese auch in [mm] $\IQ[x]$ [/mm] irreduzibel sind.

Nun ist doch dieser "Umweg" gar nicht nötig. Denn [mm] \IQ [/mm] ist doch als Körper ein Hauptidealring und somit auch ein faktorieller Ring. Also ist doch Eisenstein direkt anwendbar, oder?

Hat der "Umweg" irgendeinen didaktischen Hintergrund, den man kennen sollte?

Vielen Dank

Grüße

        
Bezug
Eisensteinkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Sa 15.09.2012
Autor: Salamence

Was sind denn Primelemente in [mm] \IQ [/mm] ? Und selbst wenn es ein Primelement p in [mm] \IQ [/mm] gäbe, wie sollte es [mm] a_{n} [/mm] nicht teilen? Es wäre doch invertierbar.

Ein Körper hat keine Primelemente...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]