www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchulPhysikElektrisches Potenzial
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "SchulPhysik" - Elektrisches Potenzial
Elektrisches Potenzial < SchulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "SchulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elektrisches Potenzial: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:25 Di 23.02.2010
Autor: maxiantor

Aufgabe
Zwei leitende Kugeln mit einer Gewichtskraft von je 0,3N hängen an 80cm langen Fäden. Ihre Aufhängepunkte sind 8cm voneinander entfernt.
a)Bringt man auf beide Kugeln die gleiche Ladung gleichen Vorzeichens, so entfernen sie sich bis auf 12cm. Wie groß ist der Betrag der Ladungen?

Hallo,

wieder einmal brauche ich eure Hilfe :). Kurz gefragt:
"Wieso kommen bei dem Lösen mit dem Energieerhaltungssatz und dem Kräftegleichgewicht unterschiedliche Ergebnisse raus?"

Meine Versuche:
Kräfteansatz:
siehe Skizze/Scan untere Hälfte:
[mm] \bruch{F_el}{F_G} [/mm] = [mm] \bruch{\Delta s}{\wurzel{l^2-{\Delta s}^2}} [/mm]
[mm] \bruch{\bruch{Q*Q}{4*\pi*\varepsilon_0*r^2}}{0.3N} [/mm] = [mm] \bruch{0.02m}{\wurzel{(0.8m)^2-(0.02m)^2}} [/mm]
r=12cm
[mm] \bruch{\bruch{Q*Q}{4*\pi*\varepsilon_0*(0.12m)^2}}{0.3N} [/mm] = [mm] \bruch{0.02m}{\wurzel{(0.8m)^2-(0.02m)^2}} [/mm]
|*0.3N [mm] |*4*\pi*\varepsilon_0*(0.12m)^2 |\wurzel{ } [/mm]

Q = [mm] \pm \wurzel{\bruch{0.02m*0.3N*4*\pi*\varepsilon_0*(0.12m)^2}{\wurzel{(0.8m)^2-(0.02m)^2}}} [/mm]

Q = [mm] \pm [/mm] 1.096 * [mm] 10^{-7}C [/mm]

Energieerhaltungssatz:
[mm] W_{el} [/mm] + [mm] 2*W_{pot} [/mm] = 0
    Zweimal Potenzielle Energie, da beide Kugeln gleichmäßig hochgehoben werden
[mm] \bruch{Q^2}{4*\pi*\varepsilon_0}(\bruch{1}{r_1}-\bruch{1}{r_0}) [/mm] + [mm] 2*F_G*(h1-h2) [/mm] = 0
h1 = 0
[mm] \bruch{Q^2}{4*\pi*\varepsilon_0}(\bruch{1}{r_1}-\bruch{1}{r_0}) [/mm] - [mm] 2*F_G*h2 [/mm] = 0
[mm] |+2*F_G*h2 |:(\bruch{1}{r_1}-\bruch{1}{r_0}) |*4*\pi*\varepsilon_0 [/mm]
Q = [mm] \pm \wurzel{\bruch{2*F_G*h2*4*\pi*\varepsilon_0}{(\bruch{1}{r_1}-\bruch{1}{r_0})}} [/mm]
h2 = [mm] 0.8m-\wurzel{(0.8m)^2-(0.02m)^2} [/mm] = [mm] 2.5*10^{-4}m [/mm]
[mm] r_0 [/mm] = 0.08m
[mm] r_1 [/mm] = 0.12m
Q = [mm] \pm \wurzel{\bruch{8*0.3N*2.5*10^{-4}m*\pi*\varepsilon_0}{(\bruch{1}{0.12m}-\bruch{1}{0.08m})}} [/mm]
Q = [mm] \pm [/mm] 6.33 * [mm] 10^{-8}C [/mm]

Scan (eig. nur wegen Skizzen beigefügt):
Auf dieser Seite ist der Energieansatz ohne die doppele Potenzielle Energie durchgeführt wurden, unterscheidet sich also von obigen Ergebnis um den Faktor [mm] \wurzel{2} [/mm]
[a]Link zum 1. Dateianhang

Energieerhaltungssatz mit doppelter Epot:
[a]Link zum 2. Dateianhang

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
        
Bezug
Elektrisches Potenzial: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 Di 23.02.2010
Autor: Event_Horizon

Hallo!

Du meine Güte, was sind das denn für Bilder? Die sind viel zu groß! Achte doch bitte drauf, daß die nicht breiter als sagen wir 600 Pixel sind. Das geht entweder direkt in deinem Scan-Programm, oder mit einen Zeichenprogramm.

Ich habe deine Bilder mal in Links umgewandelt, da kann man nun drauf klicken und bekommt die Bilder einzeln angezeigt. Glücklicherweise skalieren heutige Browser das runter...


Zu deiner Frage:

Ich erhalte mit deinem Energie-Ansatz auch ein Ergebnis von [mm] 1.1*10^{-7}C [/mm] .

Zwar kannst du schreiben [mm] W_{el}=2W_{pot} [/mm]  weil beides die Gesamtenergie zu unterschiedlichen Zeitpunkten darstellt, und du kannst auch sicher direkt [mm] 2*F_G*h [/mm] schreiben, aber ich wüßte jetzt nicht, wo sich da ein Fehler eingeschlichen hat, ich vermute daher, daß du dich schlicht irgendwo verrechnet hast.

Bezug
        
Bezug
Elektrisches Potenzial: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Mi 24.02.2010
Autor: leduart

Hallo
der Kräfteansatz ist hier der richtige, Energieerhaltung gilt nicht! Wenn man den Versuch wirklich machte, d.h. die Kugeln plötzlich aufläd, schlagen sie über die "Ruhelage" im Kräftegelichgewicht aus, und pendeln sich erst nach einiger Zeit in der Ruhelage ein.
Wenn du an eine Feder eine Masse hängst, kannst du die Gleichgewichtslage -also die Endauslenkung- auch nicht mit dem Energiesatz ausrechnen.
Wenn die Aufgabe hieße: Nach dem Aufladen haben die Kugeln einen Maximalausschlag von ...cm. dann wäre der Energiesatz der richtige Ansatz.
Ich sehe beim Nachlesen: "sie entfernen sich "bis auf" das kann man auch so deuten, dass es der Maximalauschlag ist, also Energiesatz Ansatz.
im Zweifelsfall mach beides, indem du sagst, wie du die 12cm interpretierst.
(deine Zahlenrechng. hab ich nicht überprüft, der Ansatz auf dem 2 ten Blatt mit Erdradius ist nicht sinnvoll)
Gruss leduart

Bezug
                
Bezug
Elektrisches Potenzial: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:38 Mi 24.02.2010
Autor: maxiantor

Ah vielen Dank :). Sowas bekommt man heutzutage leider nicht mehr in der Schule gesagt :S.. und mit Experimenten sieht es auch dünne aus.

Das mit der Erdmasse war um nur, damit die Angaben von "Abstand zu Erdmittelpunkt", Erdmasse und g sich nicht selbst widersprechen, da ich hoffte, dass der doch relativ kleine Unterschied entsteht, weil sich mit der Höhe g ändert.

Bezug
                        
Bezug
Elektrisches Potenzial: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:08 Mi 24.02.2010
Autor: rainerS

Hallo!

> Das mit der Erdmasse war um nur, damit die Angaben von
> "Abstand zu Erdmittelpunkt", Erdmasse und g sich nicht
> selbst widersprechen, da ich hoffte, dass der doch relativ
> kleine Unterschied entsteht, weil sich mit der Höhe g
> ändert.

Absolut ist der Unterscheid zwar klein, aber relativ groß: die beiden Ergebnis unterscheiden sich ja fast um den Faktor 2. So etwas ist nicht mit der kleinen Änderung der Gravitation zu erklären.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "SchulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]