www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungElem. Geometrie - Isometrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Elem. Geometrie - Isometrie
Elem. Geometrie - Isometrie < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elem. Geometrie - Isometrie: Aufgabe - Hilfe?!
Status: (Frage) beantwortet Status 
Datum: 13:37 So 20.04.2008
Autor: pilsum

Aufgabe
Eine Abbildung der Ebene auf sich f : E [mm] \mapsto [/mm] E heißt Isometrie, wenn
für alle Punkte P,Q  [mm] \in [/mm] E:
|PQ| = |f(P)f(Q)|.
Es sei f eine Isometrie. Es sei g [mm] \subset [/mm] E eine Gerade. Man beweise, dass alle
Punkte der Menge
{f(P) | P [mm] \in [/mm] g}
auf einer Geraden liegen.

also, wenn ich den anfang richtig verstehe, geht es hier um eine parallelverschiebung von einer ebene auf der deren abbild - richtig?
geht es denn im zweiten teil darum zu beweisen, dass eine gerade, die auf einer ebene liegt, in ihrer abbildung genau eine gerade hat?



        
Bezug
Elem. Geometrie - Isometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 05:43 Mo 21.04.2008
Autor: angela.h.b.


> Eine Abbildung der Ebene auf sich f : E [mm]\mapsto[/mm] E heißt
> Isometrie, wenn
>  für alle Punkte P,Q  [mm]\in[/mm] E:
>  |PQ| = |f(P)f(Q)|.
>  Es sei f eine Isometrie. Es sei g [mm]\subset[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

E eine Gerade.

> Man beweise, dass alle
>  Punkte der Menge
>  {f(P) | P [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

g}

>  auf einer Geraden liegen.
>  also, wenn ich den anfang richtig verstehe, geht es hier
> um eine parallelverschiebung von einer ebene auf der deren
> abbild - richtig?

Hallo,

[willkommenmr].

Die Parallelverschiebung wäre ein Beipiel für eine Isometrie, aber auch Drehungen und Spiegelungen und Kombinationen aus allen dreien erhalten die Abstände.

>  geht es denn im zweiten teil darum zu beweisen, dass eine
> gerade, die auf einer ebene liegt, in ihrer abbildung genau
> eine gerade hat?

Es geht daraum, daß bei einer Isometrie das Bild einer Geraden wieder eine Gerade ist.

Zum Beweis würde ich mir drei Punkte einer Geraden hernehmen, und zeigen, daß deren Bilder wieder auf einer Geraden liegen.

Eventuell kannst Du das per Widerspruch machen, indem Du annimmst, daß deren Bild nicht auf einer Geraden liegt. (Stichwort: Dreiecksungleichung)

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]