www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisElementargebiete
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Elementargebiete
Elementargebiete < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elementargebiete: Charakterisierung
Status: (Frage) beantwortet Status 
Datum: 13:06 Mi 25.03.2009
Autor: didi1985

Aufgabe
Unter anderem sind gleichbedeutend:
1) D ist Elementargebiet
2) Jede in D nullstellenfreie analytische Funktion f besitzt analytischen Logarithmus in D, d.h. es gibt eine analytische Funktion l [mm] :D\to \IC [/mm] mit f= exp(l(z))
3) Jede in D nullstellenfreie analytische Funktion besitzt analytische Quadratwurzel in D.
4) D ist entweder [mm] \IC [/mm] oder konform äquivalent zum Einheitskreis [mm] \IE [/mm]

Hi!
Mir sind hier noch nicht alle Richtungen klar.
Folgendes ist mir klar:
[mm] 1)\gdw2) [/mm] wegen: Riemannscher Abb.satz und Elementargebiete sind nur zu Elementargebieten konform äquivalent
[mm] 1)\to2)\to3): [/mm] Beweis ist mir bekannt und 3) ist Folgerung von 2)

Was mir fehlt ist bei 2) und 3) die Rückrichtung
Laut Buch (Freitag-Busam) soll dies aus dem Riemannschen Abbildungssatz hervorgehen, wo man zeigen kann: [mm] 3)\to4). [/mm]

Mir ist aber leider nicht klar, wie das gehen soll. Der Abbildungssatz geht doch bereits von Elementargbeiten aus, sodass das zu zeigende hier ja quasi schon Voraussetzung ist...

Oder hab ich was übersehen?
Vielleicht kann mir da jemand helfen


        
Bezug
Elementargebiete: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 Mi 25.03.2009
Autor: didi1985

Ergänzung: bei den Aussagen 2-4 ist D ein Gebiet; sprich die Aussagen sind für jedes Gebiet D gleichbedeutend

Bezug
        
Bezug
Elementargebiete: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 Mi 25.03.2009
Autor: fred97


> Unter anderem sind gleichbedeutend:
>  1) D ist Elementargebiet
>  2) Jede in D nullstellenfreie analytische Funktion f
> besitzt analytischen Logarithmus in D, d.h. es gibt eine
> analytische Funktion l [mm]:D\to \IC[/mm] mit f= exp(l(z))
>  3) Jede in D nullstellenfreie analytische Funktion besitzt
> analytische Quadratwurzel in D.
>  4) D ist entweder [mm]\IC[/mm] oder konform äquivalent zum
> Einheitskreis [mm]\IE[/mm]
>  Hi!
>  Mir sind hier noch nicht alle Richtungen klar.
>  Folgendes ist mir klar:
>  [mm]1)\gdw2)[/mm] wegen: Riemannscher Abb.satz und Elementargebiete
> sind nur zu Elementargebieten konform äquivalent
>  [mm]1)\to2)\to3):[/mm] Beweis ist mir bekannt und 3) ist Folgerung
> von 2)
>  
> Was mir fehlt ist bei 2) und 3) die Rückrichtung
>  Laut Buch (Freitag-Busam) soll dies aus dem Riemannschen
> Abbildungssatz hervorgehen, wo man zeigen kann: [mm]3)\to4).[/mm]
>  
> Mir ist aber leider nicht klar, wie das gehen soll. Der
> Abbildungssatz geht doch bereits von Elementargbeiten aus,
> sodass das zu zeigende hier ja quasi schon Voraussetzung
> ist...
>  



Wenn Du Dir den Beweis des Riemannschen Abbildungssatzes ganz genau ansiehst, wirst Du feststellen , dass von D nur verwendet wird:

"Jede in D nullstellenfreie analytische Funktion besitzt analytische Quadratwurzel in D."


Nennen wir das einmal die Eigenschaft (W)

(W wie Wurzel)

Nur diese Eigenschaft von D geht in den Beweis ein ( man  muß natürlich vorher gezeigt haben, dass für zwei konform äquivalente Gebiete gilt: entweder haben beide die Eig. (W) oder beide nicht, das ist aber nicht schwer, versuch Dich mal daran). Also hast Du die Implikation

                    $ [mm] 3)\to4) [/mm] $


FRED






> Oder hab ich was übersehen?
>  Vielleicht kann mir da jemand helfen
>  


Bezug
                
Bezug
Elementargebiete: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:47 Mi 25.03.2009
Autor: didi1985

Also im Moment hab ich jetzt grad keine zündende Idee - ich hoffe, dass ich sie mit ein wenig zeitlichem Abstand bekomme. Ich meld mich dann nochmal, falls ich es nicht versteh...
Aber danke schon mal

Bezug
                
Bezug
Elementargebiete: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:43 So 29.03.2009
Autor: didi1985

so, ich hatte jetzt Zeit mich damit zu beschäftigen. Allerdings steig ich noch nicht durch.

Du sagst, es wird nur verwendet:
"Jede in D nullstellenfreie analytische Funktion besitzt analytische Quadratwurzel in D."
Hierzu meine Frage: Wieso darf man das verwenden? (Ich kenne diesen Satz nur für Elementargebiet D)

Laut Freitag/Busam wird im Beweis die analytische Quadratwurzel im Beweis so verwendet.
Beim 1. Schritt:  Zu jedem Elementargebiet D existiert konform äquivalentes Gebiet [mm] D_1, [/mm] sodass im Komplement [mm] \IC-D_1 [/mm] eine volle Kreisscheibe enthalten ist.
Der Beweis dieses Schrittes geht von der Funktion f(z)=z-b (b nicht in D) aus. Jetzt steht hier: Die Funktion D ist in dem GEBIET D analytisch.
Also nicht mehr Elementargebiet (es ist doch noch dasselbe D oder?)
dann wird gefolgert, dass f analytische Quadratwurzel hat (aber das kann man doch nur sagen, wenn D ein Elementargebiet ist - D Gebiet langt doch nicht)...

Ich vermute, dass es irgendwie mit diesem Teil zusammenhängt...
Wäre nett, wenn du mir hier noch auf die Sprünge helfen könntest

Bezug
                        
Bezug
Elementargebiete: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:47 Mo 30.03.2009
Autor: didi1985

Habe dummerweise Fälligkeit auf nur 24 Stunden gesetzt. Wäre immer noch für ein Antwort dankbar, wenn mir jemand weiter helfen kann.

Bezug
                        
Bezug
Elementargebiete: Antwort
Status: (Antwort) fertig Status 
Datum: 09:37 Di 31.03.2009
Autor: fred97

Nochmal:

Wenn D ein Elementargebiet ist, so hat es die Eigenschaft (W)

Wenn Du Dir den Beweis des Riemannschen Abbildungssatzes anschaust, so wirst Du feststellen: es wird nur die Eigenschaft (W) benutzt.

Damit ist gezeigt:

Ist D ein Gebiet mit der Eigenschaft (W) und ist D [mm] \not= \IC, [/mm] so ist D konform äquivalent zur offenen Einheitskreisscheibe.

Damit ist dann für ein Gebiet D gezeigt:

D ist ein Elementargebiet [mm] \gdw [/mm] D hat die Eig. (W)

FRED




Bezug
                                
Bezug
Elementargebiete: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Do 09.04.2009
Autor: didi1985

okay - danke. ich habs nun begriffen...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]