www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperEndliche Körper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Endliche Körper
Endliche Körper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endliche Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Do 02.09.2010
Autor: Lippel

Aufgabe
Es sei [mm] $\IF$ [/mm] ein endlicher Körper der Charakteristik $p$, wobei $p$ den Kern des kanonischen Ringhomomorphismus [mm] $\IZ \to \IF$ [/mm] erzeugt. Man zeige:
(i) p ist eine Primzahl
(ii) Es besteht [mm] $\IF$ [/mm] aus [mm] $p^r$ [/mm] Elementen, wobei r eine geeignete natürliche Zahl ist.

Hallo,

ich denke zu (i) habe ich eine Lösung, die allerdings der Verifikation bedarf, bin mir nicht ganz sicher. In Teil (ii) hänge ich.

(i) Angenommen p nicht prim [mm] $\Rightarrow$ [/mm] es gibt [mm]a,b \in \IF: p | ab, p\nmid{a}, p\nmid{b} \Rightarrow 0 = ab [/mm] mit [mm]a \not= 0, b\not= 0 \Rightarrow \IF[/mm] nicht nullteilerfrei [mm] $\Rightarrow \IF$ [/mm] kein Körper

(ii) Die Aussage erscheint mir logisch. Ich finde aber keinen Ansatz zu einem Beweis. Ich weiß, dass [mm] §\IF$ [/mm] auf jeden Fall einen zu [mm] $\IZ/p\IZ$ [/mm] isomorphen Teilkörper enthält. Komme ich damit weiter?

Vielen Dank für die Hilfe.

Viele Grüße, Lippel

        
Bezug
Endliche Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Do 02.09.2010
Autor: felixf

Moin Lippel,

> Es sei [mm]\IF[/mm] ein endlicher Körper der Charakteristik [mm]p[/mm],
> wobei [mm]p[/mm] den Kern des kanonischen Ringhomomorphismus [mm]\IZ \to \IF[/mm]
> erzeugt. Man zeige:
>  (i) p ist eine Primzahl
>  (ii) Es besteht [mm]\IF[/mm] aus [mm]p^r[/mm] Elementen, wobei r eine
> geeignete natürliche Zahl ist.
>  
> ich denke zu (i) habe ich eine Lösung, die allerdings der
> Verifikation bedarf, bin mir nicht ganz sicher. In Teil
> (ii) hänge ich.
>  
> (i) Angenommen p nicht prim [mm]\Rightarrow[/mm] es gibt [mm]a,b \in \IF: p | ab, p\nmid{a}, p\nmid{b} \Rightarrow 0 = ab[/mm]

Was bedeutet Teilbarkeit in [mm] $\IF$? [/mm] Du solltest $a, b [mm] \in \IZ$ [/mm] waehlen, und dann ihr Bild in [mm] $\IF$ [/mm] betrachten.

> mit [mm]a \not= 0, b\not= 0 \Rightarrow \IF[/mm] nicht
> nullteilerfrei [mm]\Rightarrow \IF[/mm] kein Körper

Vom Prinzip her richtig.

> (ii) Die Aussage erscheint mir logisch. Ich finde aber
> keinen Ansatz zu einem Beweis. Ich weiß, dass [mm]§\IF$[/mm] auf
> jeden Fall einen zu [mm]\IZ/p\IZ[/mm][/mm] isomorphen Teilkörper
> enthält. Komme ich damit weiter?

Ueberleg dir, dass [mm] $\IF$ [/mm] ein Vektorraum ueber diesem Teilkoerper ist.

LG Felix



Bezug
                
Bezug
Endliche Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:39 Do 02.09.2010
Autor: Lippel

Hallo Felix, vielen Dank für deine Antwort (mal wieder ;-) )

> > Es sei [mm]\IF[/mm] ein endlicher Körper der Charakteristik [mm]p[/mm],
> > wobei [mm]p[/mm] den Kern des kanonischen Ringhomomorphismus [mm]\IZ \to \IF[/mm]
> > erzeugt. Man zeige:
>  >  (i) p ist eine Primzahl
>  >  (ii) Es besteht [mm]\IF[/mm] aus [mm]p^r[/mm] Elementen, wobei r eine
> > geeignete natürliche Zahl ist.
>  >  
> > ich denke zu (i) habe ich eine Lösung, die allerdings der
> > Verifikation bedarf, bin mir nicht ganz sicher. In Teil
> > (ii) hänge ich.
>  >  
> > (i) Angenommen p nicht prim [mm]\Rightarrow[/mm] es gibt [mm]a,b \in \IF: p | ab, p\nmid{a}, p\nmid{b} \Rightarrow 0 = ab[/mm]
>  
> Was bedeutet Teilbarkeit in [mm]\IF[/mm]? Du solltest [mm]a, b \in \IZ[/mm]
> waehlen, und dann ihr Bild in [mm]\IF[/mm] betrachten.
>  

Nochmal: [mm] $\phi$ [/mm] beizeichne den kanon. Ringhom [mm] $\IZ \to \IF$ [/mm]
Angenommen $p$ nicht prim
[mm] $\Rightarrow$ [/mm] es gibt [mm] a,b \in \IZ: p | ab, p\nmid{a}, p\nmid{b} \Rightarrow [/mm] es gibt [mm] s \in \IZ: ps = ab [/mm]
[mm] \Rightarrow \phi(a)\phi(b) = \phi(ab) = \phi(ps) = \phi(p)\phi(s) = 0 [/mm], da $p [mm] \in Kern(\phi)$ [/mm]
[mm] \Rightarrow 0 = \phi(a)\phi(b) [/mm] mit [mm] $\phi(a) \not= [/mm] 0, [mm] \phi(b) \not= [/mm] 0$, da $a,b [mm] \notin [/mm] (p) [mm] \subset \IZ$ [/mm]
[mm]\Rightarrow \IF [/mm] nicht nullteilerfrei, also kein Körper.
Jetzt korrekt?


> > (ii) Die Aussage erscheint mir logisch. Ich finde aber
> > keinen Ansatz zu einem Beweis. Ich weiß, dass [mm]§\IF$[/mm] auf
> > jeden Fall einen zu [mm]\IZ/p\IZ[/mm][/mm] isomorphen Teilkörper
> > enthält. Komme ich damit weiter?
>  
> Ueberleg dir, dass [mm]\IF[/mm] ein Vektorraum ueber diesem
> Teilkoerper ist.
>  

Ich sehe ein, dass man z.B. [mm] $\IF_4$ [/mm] als Vektorraum der Dimension 2 über [mm] $\IF_2$ [/mm] betrachten kann. Ich weiß leider nicht wie ich dies allgemein zeigen kann. Kannst du (oder auch gerne jemand anders) mir da nochmal eine Tipp geben?

Vielen Dank nochmal.

Viele Grüße, Lippel


Bezug
                        
Bezug
Endliche Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 23:38 Do 02.09.2010
Autor: felixf

Moin!

> Hallo Felix, vielen Dank für deine Antwort (mal wieder ;-)
> )

Bitte :)

> > > Es sei [mm]\IF[/mm] ein endlicher Körper der Charakteristik [mm]p[/mm],
> > > wobei [mm]p[/mm] den Kern des kanonischen Ringhomomorphismus [mm]\IZ \to \IF[/mm]
> > > erzeugt. Man zeige:
>  >  >  (i) p ist eine Primzahl
>  >  >  (ii) Es besteht [mm]\IF[/mm] aus [mm]p^r[/mm] Elementen, wobei r eine
> > > geeignete natürliche Zahl ist.
>  >  >  
> > > ich denke zu (i) habe ich eine Lösung, die allerdings der
> > > Verifikation bedarf, bin mir nicht ganz sicher. In Teil
> > > (ii) hänge ich.
>  >  >  
> > > (i) Angenommen p nicht prim [mm]\Rightarrow[/mm] es gibt [mm]a,b \in \IF: p | ab, p\nmid{a}, p\nmid{b} \Rightarrow 0 = ab[/mm]
>  
> >  

> > Was bedeutet Teilbarkeit in [mm]\IF[/mm]? Du solltest [mm]a, b \in \IZ[/mm]
> > waehlen, und dann ihr Bild in [mm]\IF[/mm] betrachten.
>  >  
> Nochmal: [mm]\phi[/mm] beizeichne den kanon. Ringhom [mm]\IZ \to \IF[/mm]
>  
> Angenommen [mm]p[/mm] nicht prim
>  [mm]\Rightarrow[/mm] es gibt [mm]a,b \in \IZ: p | ab, p\nmid{a}, p\nmid{b} \Rightarrow[/mm]
> es gibt [mm]s \in \IZ: ps = ab[/mm]
>  [mm]\Rightarrow \phi(a)\phi(b) = \phi(ab) = \phi(ps) = \phi(p)\phi(s) = 0 [/mm],
> da [mm]p \in Kern(\phi)[/mm]
>  [mm]\Rightarrow 0 = \phi(a)\phi(b)[/mm] mit
> [mm]\phi(a) \not= 0, \phi(b) \not= 0[/mm], da [mm]a,b \notin (p) \subset \IZ[/mm]
>  
> [mm]\Rightarrow \IF[/mm] nicht nullteilerfrei, also kein Körper.
>  Jetzt korrekt?

Ja, so ist's perfekt :)

Alternativ kannst du auch benutzen, dass du $p = a b$ mit $0 < a, b < p$, $a, b [mm] \in \IZ$ [/mm] schreiben kannst, wenn $p$ nicht prim ist. Je nachdem wie man Primzahl nun genau definiert hat ;-)

> > > (ii) Die Aussage erscheint mir logisch. Ich finde aber
> > > keinen Ansatz zu einem Beweis. Ich weiß, dass [mm]§\IF$[/mm] auf
> > > jeden Fall einen zu [mm]\IZ/p\IZ[/mm][/mm] isomorphen Teilkörper
> > > enthält. Komme ich damit weiter?
>  >  
> > Ueberleg dir, dass [mm]\IF[/mm] ein Vektorraum ueber diesem
> > Teilkoerper ist.
>
> Ich sehe ein, dass man z.B. [mm]\IF_4[/mm] als Vektorraum der
> Dimension 2 über [mm]\IF_2[/mm] betrachten kann. Ich weiß leider
> nicht wie ich dies allgemein zeigen kann. Kannst du (oder
> auch gerne jemand anders) mir da nochmal eine Tipp geben?

Nun, du kannst natuerlich die Vektorraumaxiome nachrechnen. Das ist ziemlich einfach.

Wenn [mm] $\IF$ [/mm] ein $r$-dimensionaler [mm] $\IF_p$-Vektorraum [/mm] ist, dann ist [mm] $\IF$ [/mm] isomorph zu [mm] $\IF_p^r$, [/mm] und hat somit [mm] $p^r$ [/mm] Elemente.

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]