Endom., Matrix hat Nullzeile < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:03 Do 03.01.2013 | Autor: | Lustique |
Aufgabe | Es sei [mm] $f\colon [/mm] V [mm] \to [/mm] V$ ein Endomorphismus eines endlich erzeugten Vektorraums, so dass $f$ kein Isomorphismus ist. Man beweise, dass es eine Basis von V gibt, in der die letzte Zeile der Matrix von $f$ aus Nullen besteht. Gilt das gleiche, wenn man das Wort Zeile durch Spalte ersetzt? |
Hallo mal wieder, ich habe eine Lösung zu obiger Aufgabe, bin mir aber nicht der Richtigkeit sicher. Meine Lösung ist Folgendes:
Sei [mm] $\dim [/mm] V=n$, [mm] $\mathbf{A}$ [/mm] die Matrix zu $f$.
Ist $f$ kein Isom., dann ist $f$ nicht surjektiv oder nicht injektiv, damit also als Endomorphismus sowohl nicht injektiv, als auch nicht surjektiv.
Damit folgt: [mm] $\neg [/mm] f [mm] \text{ injektiv }\Rightarrow \ker f\neq\{0\}\Rightarrow \dim\ker f>0\Rightarrow \dim\operatorname{im} f<\dim [/mm] V=n$ nach Dimensionsformel.
Bringe nun [mm] $\mathbf{A}$ [/mm] in Zeilenstufenform (Gauß-Algorithmus). Dann gilt (eigentlich galt das natürlich auch schon vorher, da sich ja der Rang nicht ändert...) [mm] $\operatorname{rang} \mathbf{A}=\dim \operatorname{im} [/mm] f<n$, aber [mm] $\mathbf{A}\in\mathbb{K}^{n\times n}$, [/mm] also existiert min. eine Zeile, die nur aus 0 besteht. Tausche diese Zeile nun mit der letzten Zeile.
Gilt das gleiche, wenn man das Wort Zeile durch Spalte ersetzt?
Hier würde ich sagen, dass die Aussage immer noch gilt. In diesem Fall ist einfach nur "Zeilenstufenform" durch "Spaltenstufenform" zu ersetzen, bzw. [mm] $\mathbf{A}^t$ [/mm] zu betrachten. Ist das richtig und reicht das als Begründung?
Ist der Rest des Beweises richtig und ausreichend? Falls ja, könntet ihr mir noch helfen, den Beweis auch noch vernünftig zu formulieren? Im Moment klingt der Beweis noch nach Kochrezept ("Man nehme..."), aber ich weiß gerade nicht, wie ich das alles vernünftig formulieren soll.
|
|
|
|
> Es sei [mm]f\colon V \to V[/mm] ein Endomorphismus eines endlich
> erzeugten Vektorraums, so dass [mm]f[/mm] kein Isomorphismus ist.
> Man beweise, dass es eine Basis von V gibt, in der die
> letzte Zeile der Matrix von [mm]f[/mm] aus Nullen besteht. Gilt das
> gleiche, wenn man das Wort Zeile durch Spalte ersetzt?
> Hallo mal wieder, ich habe eine Lösung zu obiger Aufgabe,
> bin mir aber nicht der Richtigkeit sicher.
Hallo,
ich teile Deine Bedenken.
Gefordert ist hier doch zu zeigen, daß es eine Basis gibt, bzgl. derer die letzte Zeile der Darstellungsmatrix eine Nullzeile ist.
> Meine Lösung
> ist Folgendes:
>
> Sei [mm]\dim V=n[/mm], [mm]\mathbf{A}[/mm] die Matrix zu [mm]f[/mm].
> Ist [mm]f[/mm] kein Isom., dann ist [mm]f[/mm] nicht surjektiv oder nicht
> injektiv, damit also als Endomorphismus sowohl nicht
> injektiv, als auch nicht surjektiv.
>
> Damit folgt: [mm][mm] \neg [/mm] f [mm] \text{ injektiv }\Rightarrow \ker f\neq\{0\}
[/mm]
Ja.
Also gibt es einen vom Nullvektor verschiedenen Vektor [mm] v\in [/mm] Kern f.
Ergänze zu einer Basis B von V und betrachte die Darstellungsmatrix.
LG Angela
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:18 Di 22.01.2013 | Autor: | Lustique |
Danke Angela, der Hinweis war schon ausreichend. :)
|
|
|
|