www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikEndomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Diskrete Mathematik" - Endomorphismus
Endomorphismus < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endomorphismus: vollst. Repräsentandensystem
Status: (Frage) überfällig Status 
Datum: 14:16 Do 20.09.2007
Autor: sirtobi

Hallo Forum,

ich habe eine Gruppe G erzeugt von zwei Elementen a,b. Diese Gruppe ist nicht kommutativ. Auf diese Gruppe G definiere ich mir einen Endomorphismus
[mm] \pi. [/mm] Desweiteren definiere ich mir einen Homomorphismus f: G -> [mm] \IR^{2} [/mm] mit f(a)=(1,0) und f(b)=(0,1). Grundsätzlich egal, hauptsache die beiden erzeugten Vektoren sind linear unabhängig und (f(a),f(b)) ist positiv orientiert, d.h det(f(a),f(b)) >0.
Diese beiden Homomorphismen erzeugen eine eindeutige lineare Abbildung A, deren zugehörige Matrix der Gestalt [mm] M=\pmat{ m_{aa} & m_{ab} \\ m_{ba} & m_{bb} } [/mm] ist. Die Einträge [mm] m_{\alpha \beta} [/mm] sind jeweils die Anzahl von [mm] \alpha [/mm] in [mm] \pi(\beta) [/mm] wobei [mm] \alpha^{-1} [/mm] -1 fach gezählt wird.
Der Homomorphismus f ist wie folgt definiert: [mm] x_{0}=(0,0) [/mm] und [mm] x_{j}= f(\alpha_{1}...\alpha_{j}) =\summe_{i=1}^{j}f(\alpha_{i}) [/mm] wobei [mm] \alpha_{i}\in \{a,b,a^{-1},b^{-1}\}. [/mm]
Nun erstelle ich einen Polygonpfad p, der die Punkte [mm] x_{i} [/mm] miteinander verbindet.
Um nun geschlossene Kurve zu erzeugen setze ich [mm] w_{0}=aba^{-1}b^{-1} [/mm] und [mm] K_{n}(\pi,f) [/mm] = [mm] A^{n}p(\pi^{n}(w_{0}), [/mm] wobei [mm] \pi^{n} [/mm] die n-te Iterierte ist.
Desweiteren sei die Umlaufzahl der Kurve [mm] K_{n} [/mm] wie gewöhnlich definiert.

Vorraussetzungen für den folgenden Teil sind:
- [mm] \pi [/mm] : G -> G endomorphismus
- f : G -> [mm] \IR^{2} [/mm] homomorphismus mit (f(a),f(b)) positiv orientiert und linear unabhängig
- A dehnend, d.h. alle Eigenwerte von A sind echt größer 1
- Umlaufzahl von [mm] K_{1} [/mm] um jeden Punkt des [mm] \IR^{2}-K_{1} [/mm] ist entweder 0 oder 1.

Sei nun weiter L ein Gitter mit der Gitterbasis (f(a),f(b)) und Q das Fundamentalparallelogramm. [mm] Q_{x} [/mm] seien Translationen von Q um Punkt x [mm] \in [/mm] L

Nun zu meiner Frage. Wenn ich die [mm] Q_{x} [/mm] betrachte die von [mm] A(K_{1}(\pi,f)) [/mm] umschlossen werden sollen grade diese Gitterpunkte x ein vollständiges Repräsentandesystem von L/A(L) mit [mm] A(L)\subset [/mm] L liefern, aber wieso?

Falls Ihr Anregungen oder sinnvolle Literaturhinweise habt, wäre ich Euch sehr dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Endomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:53 Do 20.09.2007
Autor: sirtobi

Einen Ansatz habe ich, der mir bisher aber nicht weiter hilft.
Wenn ich A(Q) mit dem Standardgitter [mm] \IZ^2 [/mm] schneide erhalte ich ein vollständiges Repräsentandensystem, insofern Q eine halboffene Menge ist z.B. Q=[0,1[^{2}

Bezug
        
Bezug
Endomorphismus: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 So 23.09.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]