www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenEntwickeln von Brüchen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Entwickeln von Brüchen
Entwickeln von Brüchen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Entwickeln von Brüchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Mi 19.09.2012
Autor: martin_vie

Aufgabe
[mm] \limes_{n\rightarrow\infty} [/mm] (1/n - 1/(n+1))/(1/(n + 2) - 1/(n + 3))


Hallo!

Möchte gerne den angegeben Bruch in diese Form umwandeln

-2/(n+1) + 6/n + 1

In dieser Form gibt es der Rechner aus, wenn ich es entwickeln lasse.

Finde man kann den Limes so sehr schön ablesen. (Lösung ist 1)

Hätte gerne gewusst, wie man Brüche in dieser Art entwickelt?

Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Entwickeln von Brüchen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:08 Mi 19.09.2012
Autor: MontBlanc

Hallo,

mach die brüche im zähler und nenner gleichnamig und kürze [mm] n^2 [/mm] heraus, dann springt dich das ergebnis an.

lg

Bezug
                
Bezug
Entwickeln von Brüchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:01 Do 20.09.2012
Autor: martin_vie

Aufgabe
(2-n)/((n(n+1)(n+2) = 1/n - 3/n+1 + 2/n+2

Danke für die schnelle Antwort :)

Hätte aber trotzdem gerne gewusst, wie man Brüche entwickelt. Es ist mir nicht zwingend um den Limes gegangen.

oder vielleicht ist dieses Beispiel besser.

(2-n)/((n(n+1)(n+2) = 1/n - 3/n+1 + 2/n+2

Bezug
                        
Bezug
Entwickeln von Brüchen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:10 Do 20.09.2012
Autor: schachuzipus

Hallo martin_vie,

> (2-n)/((n(n+1)(n+2) = 1/n - 3/n+1 + 2/n+2
>  Danke für die schnelle Antwort :)
>  
> Hätte aber trotzdem gerne gewusst, wie man Brüche
> entwickelt. Es ist mir nicht zwingend um den Limes
> gegangen.
>  
> oder vielleicht ist dieses Beispiel besser.
>
> (2-n)/((n(n+1)(n+2) = 1/n - 3/(n+1) + 2/(n+2)

Klammern!!

Das kannst du prinzipiell über eine Partialbruchzerlegung machen:

Ansatz:

[mm] $\frac{2-n}{n\cdot{}(n+1)\cdot{}(n+2)} [/mm] \ = \ [mm] \frac{A}{n}+\frac{B}{n+1}+\frac{C}{n+2}$ [/mm]

Dann rechterhand gleichnamig machen und alles auf einen Bruch schreiben. Dann im Zähler nach Potenzen von $n$ sortieren und einen Koeffizientenvergleich mit dem Zähler auf der linken Seite, also mit [mm] $2-n=\red 0\cdot{}n^2+\blue{(-1)}\cdot{}n+\green{2}$ [/mm] machen und so $A,B,C$ bestimmen ...

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]