www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitEpsilon -Delta - Krit.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - Epsilon -Delta - Krit.
Epsilon -Delta - Krit. < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Epsilon -Delta - Krit.: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:34 Sa 21.11.2009
Autor: chipbit

Aufgabe
Mittels der [mm] \varepsilon -\delta [/mm] - Argumente beweise man die Stetigkeit folgender Funktionen:
a) [mm] f(x)=\wurzel[3]{x} [/mm]
b) f(x)=sin x

Hallo Leute,
zu allererst, ich muss zugeben, ich komme mit diesem Kriterium nicht ganz klar. Von daher wollte ich fragen, ob mir das jemand vielleicht nochmal nahe legen könnte, bevor ich mich an die Aufgaben mache. Also, die Theorie dahinter kenn ich, ich versteh nur nich so ganz wie ich das anwenden muss. Vielleicht kann mir das jemand an einem anderen Beispiel nochmal erklären. Wäre für Hilfe dankbar.
Lg, chip

        
Bezug
Epsilon -Delta - Krit.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:15 Sa 21.11.2009
Autor: rainerS

Hallo!

> Mittels der [mm]\varepsilon -\delta[/mm] - Argumente beweise man die
> Stetigkeit folgender Funktionen:
>  a) [mm]f(x)=\wurzel[3]{x}[/mm]
>  b) f(x)=sin x
>  Hallo Leute,
>  zu allererst, ich muss zugeben, ich komme mit diesem
> Kriterium nicht ganz klar. Von daher wollte ich fragen, ob
> mir das jemand vielleicht nochmal nahe legen könnte, bevor
> ich mich an die Aufgaben mache. Also, die Theorie dahinter
> kenn ich, ich versteh nur nich so ganz wie ich das anwenden
> muss. Vielleicht kann mir das jemand an einem anderen
> Beispiel nochmal erklären. Wäre für Hilfe dankbar.

Das [mm] $\varepsilon$-$\delta$-Kriterium [/mm] für eine Funktion f an der Stelle [mm] $x_0$ [/mm] besagt, dass aus

[mm] |x-x_0| <\delta [/mm]

folgt, dass

[mm] |f(x)-f(x_0)| < \varepsilon [/mm]

ist, und zwar so, dass du für ein vorgegebenes [mm] $\varepsilon$ [/mm] immer eine passendes [mm] $\delta$ [/mm] finden kannst.

Deswegen ist es häufig am einfachsten von, [mm] $|x-x_0| <\delta [/mm] $ auszugehen.

Ich zeige es dir an dem ersten Beispiel. Dabei hilft die Identität

(*) [mm] a^3-b^3 = (a-b)*(a^2+ab+b^2) [/mm],

die ich mit [mm] $a=\wurzel[3]{x}$ [/mm] und [mm] $b=\wurzel[3]{x_0}$ [/mm] anwende:

[mm] |x-x_0| = |\wurzel[3]{x}-\wurzel[3]{x_0}| | \wurzel[3]{x^2}+\wurzel[3]{xx_0}+\wurzel[3]{x_0^2}| [/mm],

das heisst für [mm] $x\not=x_0$ [/mm] ist

  [mm] |\wurzel[3]{x}-\wurzel[3]{x_0}| = \bruch{|x-x_0|}{| \wurzel[3]{x^2}+\wurzel[3]{xx_0}+\wurzel[3]{x_0^2}|} [/mm].

Nun ist [mm] $\wurzel[3]{x^2}+\wurzel[3]{xx_0} \ge [/mm] 0 [mm] \gdw [/mm] | [mm] \wurzel[3]{x^2}+\wurzel[3]{xx_0}+\wurzel[3]{x_0^2}| \ge |\wurzel[3]{x_0^2}|$ [/mm] und daher

[mm] |\wurzel[3]{x}-\wurzel[3]{x_0}| \le \bruch{|x-x_0|}{|\wurzel[3]{x_0^2}|} [/mm] .

Wenn also [mm] $|x-x_0|<\delta$, [/mm] so ist

  [mm] |\wurzel[3]{x}-\wurzel[3]{x_0}|\le \bruch{\delta}{|\wurzel[3]{x_0^2}|} [/mm],

und damit ist

  [mm] |\wurzel[3]{x}-\wurzel[3]{x_0}| < \varepsilon [/mm], wenn [mm] $|x-x_0|<\delta$ [/mm] und [mm] \delta = |\wurzel[3]{x_0^2}|\varepsilon [/mm].

Der einzige wirkliche Trick ist die Verwendung der Identität (*). Das funktioniert bei Potenzfunktionen; bei anderen Funktionen musst du eine andere Möglichkeit finden.

Jetzt probiere es mit dem Sinus! Tipp: Additionstheorem.

Viele Grüße
   Rainer


Bezug
                
Bezug
Epsilon -Delta - Krit.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:01 Sa 21.11.2009
Autor: chipbit

Okay, danke. Ich versuchs mal....
Also, ich nehme dann das Additionstheorem
sin(x-y)=sin(x)*cos(y)-cos(x)*sin(y)
so, dann krieg ich ja für [mm] x\not= x_0 [/mm]
[mm] |x-x_0|=|sin(x)-sin(x_0)|=|sin(x)*cos(x_0)-cos(x)*sin(x_0)| [/mm]
[mm] \Rightarrow |sin(x)-sin(x_0)|= \bruch{|x-x_0|}{|sin(x)*cos(x_0)-cos(x)*sin(x_0)|} [/mm]
so, jetzt bin ich mir nicht so sicher:
[mm] sin(x)cos(x_0)\ge [/mm] 0 [mm] \gdw |sin(x)cos(x_0)-cos(x)sin(x_0)|\ge|cos(x)sin(x_0)|\ge |sin(x_0)| [/mm] solange cos(x) nicht 0 wird.
oder funktioniert das in dem Fall nicht ganz so analog wie bei dem Wurzelterm vorhin?

Bezug
                        
Bezug
Epsilon -Delta - Krit.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Sa 21.11.2009
Autor: rainerS

Hallo!

> Okay, danke. Ich versuchs mal....
>  Also, ich nehme dann das Additionstheorem
> sin(x-y)=sin(x)*cos(y)-cos(x)*sin(y)
>  so, dann krieg ich ja für [mm]x\not= x_0[/mm]
>  
> [mm]|x-x_0|=|sin(x)-sin(x_0)|=|sin(x)*cos(x_0)-cos(x)*sin(x_0)|[/mm]


Also das stimmt sicher nicht. Ich nehme an, du meinst

[mm] \sin|x-x_0| = |\sin(x-x_0)| = |\sin(x)*\cos(x_0)-\cos(x)*\sin(x_0)| [/mm]

> [mm]\Rightarrow |sin(x)-sin(x_0)|= \bruch{|x-x_0|}{|sin(x)*cos(x_0)-cos(x)*sin(x_0)|}[/mm]

Wie kommst du von der Zeile vorher darauf?

Hilfreicher ist dieses:

[mm] \sin x -\sin x_0 = 2\cos \bruch{x+x_0}{2} \, \sin\bruch{x-x_0}{2} [/mm].

Nun schätze Sinus und Cosinus geschickt ab!

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]