www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPrädikatenlogikErfüllbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Prädikatenlogik" - Erfüllbarkeit
Erfüllbarkeit < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erfüllbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:39 So 08.11.2009
Autor: mastermoney

Aufgabe
Sind die folgenden prädikatenlogischen Formeln erfüllbar? Wenn ja, geben Sie eine erfüllende Interpretation I an. Ansonsten begründen Sie, warum die Formel nicht erfüllbar ist.

(a) [mm] \alpha [/mm] = $ [mm] \forall [/mm] x [mm] \forall [/mm] y [mm] \forall [/mm] z (P(x,y) [mm] \wedge [/mm] P(y,z) [mm] \Rightarrow [/mm] P(x,z)) [mm] \wedge \forall [/mm] x [mm] \exists [/mm] y [mm] \neg [/mm] P(x,y) [mm] \wedge \forall [/mm] x [mm] \neg [/mm] P(x,x) [mm] \wedge \exists [/mm] x [mm] \exists [/mm] y P(x,y) $
(b) [mm] \beta [/mm] = [mm] $\forall [/mm] x [mm] \neg [/mm] P(x,x) [mm] \wedge \forall [/mm] x [mm] \exists [/mm] y P(x,y) [mm] \wedge \forall [/mm] x [mm] \forall [/mm] y [mm] \forall [/mm] z (P(x,y) [mm] \wedge [/mm] P(y,z) [mm] \Rightarrow [/mm] P(x,z)) [mm] \wedge \forall [/mm] x [mm] \forall [/mm] y (P(x,y) [mm] \Rightarrow \neg [/mm] P(y,x))$
(c) [mm] \gamma [/mm] = [mm] $ \forall x \forall y \forall z (P(x,y) \wedge P(y,z) \Rightarrow P(x,z)) \wedge \forall x \exists y (\neg P(x,y) \vee P(y,x)) \wedge \forall x \neg P(x,x) \wedge \exists x \forall y P(x,y) $ [/mm]
(d) [mm] \delta [/mm] = [mm] $\forall [/mm] x P(x,x) [mm] \wedge \forall [/mm] x [mm] \exists [/mm] y P(x,y) [mm] \wedge \forall [/mm] x [mm] \forall [/mm] y [mm] \forall [/mm] z (P(x,y) [mm] \wedge [/mm] P(y,z) [mm] \Rightarrow [/mm] P(x,z)) [mm] \wedge \forall [/mm] x [mm] \forall [/mm] y [mm] (\neg [/mm] P(x,y) [mm] \Rightarrow [/mm] P(y,x))$

Hallo,

wie löst man diese Aufgaben? Uns wurde gesagt, dass man erst schauen muss, was transitiv usw. ist, aber ich habe leider schon dabei Schwierigkeiten. Erst anschließend kann man diese Aufgaben lösen?
Ich wäre sehr froh, wenn mir jemand dabei helfen könnte.

Ich habe diese Frage in keinem anderen Forum gestellt.

Vielen Dank im Voraus,
mastermoney

        
Bezug
Erfüllbarkeit: alpha ist erfüllbar
Status: (Antwort) fertig Status 
Datum: 15:24 So 08.11.2009
Autor: Al-Chwarizmi


> Sind die folgenden prädikatenlogischen Formeln erfüllbar?
> Wenn ja, geben Sie eine erfüllende Interpretation I an.
> Ansonsten begründen Sie, warum die Formel nicht erfüllbar
> ist.
>  
> (a) [mm]\alpha[/mm] = [mm]\forall x \forall y \forall z (P(x,y) \wedge P(y,z) \Rightarrow P(x,z)) \wedge \forall x \exists y \neg P(x,y) \wedge \forall x \neg P(x,x) \wedge \exists x \exists y P(x,y)[/mm]
>  
> (b) [mm]\beta[/mm] = [mm]\forall x \neg P(x,x) \wedge \forall x \exists y P(x,y) \wedge \forall x \forall y \forall z (P(x,y) \wedge P(y,z) \Rightarrow P(x,z)) \wedge \forall x \forall y (P(x,y) \Rightarrow \neg P(y,x))[/mm]
>  
> (c) [mm]\gamma[/mm] = [mm]$ \forall x \forall y \forall z (P(x,y) \wedge P(y,z) \Rightarrow P(x,z)) \wedge \forall x \exists y (\neg P(x,y) \vee P(y,x)) \wedge \forall x \neg P(x,x) \wedge \exists x \forall y P(x,y) $[/mm]
>  
> (d) [mm]\delta[/mm] = [mm]\forall x P(x,x) \wedge \forall x \exists y P(x,y) \wedge \forall x \forall y \forall z (P(x,y) \wedge P(y,z) \Rightarrow P(x,z)) \wedge \forall x \forall y (\neg P(x,y) \Rightarrow P(y,x))[/mm]
>  
> Hallo,
>  

> wie löst man diese Aufgaben? Uns wurde gesagt, dass man

> erst schauen muss, was transitiv usw. ist, aber ich habe
> leider schon dabei Schwierigkeiten. Erst anschließend kann
> man diese Aufgaben lösen?


Hallo  mastermoney,

es geht hier jeweils um eine Relation P (wohl in der Art
einer Ordnungsrelation), aber mit jeweils unterschied-
lichen Forderungen. Um die Zeilen richtig zu verstehen,
muss man sehr pingelig auf die Beklammerung achten.
Zu einer solchen Relation muss man sich eine Grund-
menge M denken, aus welcher die Elemente x,y,z,....
stammen.

Formel [mm] \alpha [/mm] , in Worte übersetzt:

1.) P ist transitiv,
2.) zu jedem Element x von M gibt es
    (mindestens) ein [mm] y\in [/mm] M so dass für das
    Paar (x,y) die Relation P nicht gilt,
3.) kein Element steht zu sich selber in
    der Relation P, und
4.) P ist nicht leer, d.h. es gibt mindestens ein
    Paar (x,y) mit P(x,y).

Nun kann man versuchen, eine Interpretation
zu "basteln", also eine Menge M und eine darauf
definierte Relation P mit den besagten Eigen-
schaften zu "erfinden".
Man kann z.B. versuchen, eine Menge M mit
möglichst wenigen Elementen zu nehmen.
Im Beispiel [mm] \alpha [/mm] darf M jedoch sicher nicht leer
sein; nur ein Element geht auch nicht, dass es
auch mit zwei oder drei Elementen nicht funk-
tioniert, kann man sich ebenfalls klar machen
(ich hoffe, mich dabei nicht geirrt zu haben ...)
Ist es am Ende gar unmöglich, so eine Inter-
pretation I=(M,P) zu finden ?
Ich denke nicht, denn ich habe eine ziemlich
einfache Interpretation mit weniger als zehn
Elementen gefunden.

LG    Al-Chwarizmi  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]