www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenErste Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Erste Ableitung
Erste Ableitung < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erste Ableitung: anderer Wert
Status: (Frage) beantwortet Status 
Datum: 20:32 Fr 28.11.2008
Autor: zoj

Aufgabe
[mm] fa(x)=\bruch{-x^{3}+4a}{a*x^{2}} [/mm]

Irgendwie komme ich nicht auf die richtige Lösung.

Ich kriege raus: [mm] fa'(x)=\bruch{-x^{3}+12a^{2}x-8a^{3}}{ax^{3}} [/mm]

Herauskommen sollte:  [mm] fa'(x)=\bruch{-x^{3}-8a^{3}}{ax^{3}} [/mm]

Das [mm] 12a^{2}x [/mm] stört. Ich habe mir die Rechnung genau angeguckt, jedoch keinen Fehler entdeckt.

Was habe ich da falsch gemacht?

        
Bezug
Erste Ableitung: auch ohne Quotientenregel
Status: (Antwort) fertig Status 
Datum: 20:42 Fr 28.11.2008
Autor: Loddar

Hallo zoj!


Ohne Deine konkrete Rechnung können wir Deinen Fehler nicht finden.

Aber um hier die MBQuotientenregel zu umgehen, kannst Du zunächst wie folgt umformen:

[mm] $$f_a(x) [/mm] \ = \ [mm] \bruch{-x^{3}+4a}{a*x^{2}} [/mm] \ = \ [mm] \bruch{-x^{3}}{a*x^{2}}+\bruch{4a}{a*x^{2}} [/mm]  \ = \ [mm] -\bruch{1}{a}*x+4*x^{-2}$$ [/mm]

Gruß
Loddar


Bezug
        
Bezug
Erste Ableitung: Quotientenregel
Status: (Frage) beantwortet Status 
Datum: 01:31 Sa 29.11.2008
Autor: zoj

Aufgabe
Gesucht ist die Ableitung folgender Funktion:

[mm] fa(x)=\bruch{-x^{3}+4a^{3}}{a*x^{2}} [/mm]

Herauskommen sollte:

[mm] fa(x)=\bruch{-x^{3}-8a^{3}}{a*x^{3}} [/mm]

Stattdessen bekomme ich:

[mm] fa(x)=\bruch{-x^{3}+12a^{2}*x-8a^{3}}{a*x^{3}} [/mm]

Was mache ich denn falsch?

Bezug
                
Bezug
Erste Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:55 Sa 29.11.2008
Autor: MathePower

Hallo zoj,

> Gesucht ist die Ableitung folgender Funktion:
>  
> [mm]fa(x)=\bruch{-x^{3}+4a^{3}}{a*x^{2}}[/mm]
>  Herauskommen sollte:
>  
> [mm]fa(x)=\bruch{-x^{3}-8a^{3}}{a*x^{3}}[/mm]
>  
> Stattdessen bekomme ich:
>  
> [mm]fa(x)=\bruch{-x^{3}+12a^{2}*x-8a^{3}}{a*x^{3}}[/mm]
>  
> Was mache ich denn falsch?


Um das herauszufinden, poste bitte Deinen Rechenweg,
wie Du zu diesem Ergebnis gekommen bist.


Gruß
MathePower

Bezug
                        
Bezug
Erste Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:01 Sa 29.11.2008
Autor: zoj

$ [mm] fa(x)=\bruch{-x^{3}+4a^{3}}{a\cdot{}x^{2}} [/mm] $

[mm] u=-x^{3}+4a^{3} [/mm]
[mm] u'=-3x^{2}+12a^{2} [/mm]

[mm] v=ax^{2} [/mm]
v'=2ax

[mm] fa'(x)=\bruch{(-3x^{2}+12a^{2})(ax^{2})-(2ax)(-x^{3}+4a^{3})}{a^{2}x^{4}} [/mm]

[mm] =\bruch{(-3ax^{4}+12a^{3}x^{2})-(-2ax^{4}+8a^{4}x)}{a^{2}x^{4}} [/mm]

[mm] =\bruch{-3ax^{4}+12a^{3}x^{2}+2ax^{4}-8a^{4}x}{a^{2}x^{4}} [/mm]

[mm] =\bruch{-ax^{4}+12a^{3}x^{2}-8a^{4}x}{a^{2}x^{4}} [/mm]

[mm] =\bruch{-x^{3}+12a^{2}x-8a^{3}}{ax^{3}} [/mm]

Das ist meine Rechnung.
Laut Buch ist dieser Term zu viel: [mm] +12a^{2}x [/mm]


Bezug
                                
Bezug
Erste Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:36 Sa 29.11.2008
Autor: angela.h.b.


> [mm]fa(x)=\bruch{-x^{3}+4a^{3}}{a\cdot{}x^{2}}[/mm]
>  
> [mm]u=-x^{3}+4a^{3}[/mm]
>  [mm]u'=-3x^{2}+12a^{2}[/mm]

Hallo,

diese Ableitung stimmt nicht. Bedenke, daß das a zu behandeln ist, als stünde da irgendeine Zahl. Das a ist zwar beliebig, aber fest, also keine Variable wie das x.

Gruß v. Angela

>  
> [mm]v=ax^{2}[/mm]
>  v'=2ax


Bezug
                                        
Bezug
Erste Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:31 Sa 29.11.2008
Autor: zoj

Jetzt bin ich aber verwirrt.

Wenn ich: $ [mm] v=ax^{2} [/mm] ableite kommt doch auf jedenfall v'=2ax raus.
Oder nicht?

Bezug
                                                
Bezug
Erste Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:36 Sa 29.11.2008
Autor: angela.h.b.


> Jetzt bin ich aber verwirrt.
>  
> Wenn ich: $ [mm]v=ax^{2}[/mm] ableite kommt doch auf jedenfall
> v'=2ax raus.
>  Oder nicht?

Hallo,

ja, das ist richtig. Du hast hier das a wie eine Zahl behandelt.


In dem  von mir beanstandeten Fall war aber  $ [mm] u(x)=-x^{3}+4a^{3} [/mm] $  abzuleiten.

Wie leitest Du denn [mm] h(x)=x^3 [/mm] + [mm] 4*7^3 [/mm] ab?

Gruß v. Angela


Bezug
                                                        
Bezug
Erste Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:16 Sa 29.11.2008
Autor: zoj

Ahh! OK, jetzt habe ich es verstanden!
Vielen Dank für die Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]