www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErw. und Var. einer ZV X
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Erw. und Var. einer ZV X
Erw. und Var. einer ZV X < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erw. und Var. einer ZV X: Aufgabenhilfe
Status: (Frage) beantwortet Status 
Datum: 18:08 Di 23.11.2010
Autor: Ultio

Aufgabe
Bestimmen Sie den Erwartungswert und die varianz einer [mm] P(\lambda)- [/mm] verteilten Zufallsvariablen X.

hallo matheraumler,
könnte mir bei dieser Aufgabe bitte jemand helfen.
Ich habe mir folgende Gedanken dazu gemacht:
Die Dichtefunktion ist
[mm] f(x)=\begin{cases} <\lambda e^{-\lambda x}, & \mbox{für } x > 0 \\ 0, & \mbox{sonst} \end{cases} [/mm]
Die Momente berechnen sich wie folgt:
[mm] m_k [/mm] = [mm] \integral_{-\infty}^{\infty}{x^k f(x) dx} [/mm]
Der erwartungswert ist das erste Moment, d.h. k=1, und die Varianz ist das zweite Moment mit k=2.
Nun ist aber
[mm] m_1 [/mm] = [mm] \integral_{-\infty}^{\infty}{x f(x) dx} [/mm] unbeschränkt mittels partieller Integration.
Ebenso verhält es sich mit:
[mm] m_2 [/mm] = [mm] \integral_{-\infty}^{\infty}{x^2 f(x) dx} [/mm] = [mm] \infty [/mm]


Ist der Ansatz falsch? Welchen Ansatz könnte ich noch wählen?
Vielen Dank im Voraus.
Gruß
Felix


        
Bezug
Erw. und Var. einer ZV X: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Di 23.11.2010
Autor: luis52

Moin

>
> Ist der Ansatz falsch? Welchen Ansatz könnte ich noch
> wählen?

Was ist denn eine $ [mm] P(\lambda)- [/mm] $Verteilung? Wenn es sich um eine Poisson-Verteilung handelt, bist du gaenzlich auf dem Holzweg. Du bearbeitest anscheinend eine Exponentialverteilung.

vg Luis

Bezug
                
Bezug
Erw. und Var. einer ZV X: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:19 Di 23.11.2010
Autor: Ultio

Hallo, danke dir, und wie rechne ich das mit der Poissonverteilung? Ja, das ist sie auch. Denke ich.
Gruß
Felix

Bezug
                        
Bezug
Erw. und Var. einer ZV X: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:35 Di 23.11.2010
Autor: luis52



> Hallo, danke dir, und wie rechne ich das mit der
> Poissonverteilung?

Na dann mach mal einen Anfang ....

vg Luis



Bezug
                                
Bezug
Erw. und Var. einer ZV X: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:20 Mi 24.11.2010
Autor: Ultio

Jetzt hab ich's danke. Und bei uns ist die Poissonverteilung so definiert. Ich musste nur die Summendarstellung nehmen, dann lief alles von allein.
Danke nochmal.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]