www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Erwartungstreue zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Statistik (Anwendungen)" - Erwartungstreue zeigen
Erwartungstreue zeigen < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungstreue zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:20 Sa 16.06.2012
Autor: Herr_von_Omikron

Aufgabe
Taxiproblem: N Taxis in einer Stadt, die von 1 bis N durchnummeriert sind, davon werden n beobachtet. (Die Wahrscheinlichkeit für die Beobachtung jeder Teilmenge von Taxis ist gleichwahrscheinlich, also [mm] \binom{N}{n}^{-1}.) [/mm]
Wir beobachten die Taxis mit den Nummer [mm] (x_1, x_2,\dots, x_n) [/mm] (schon der Größe nach sortiert) und haben einen Schätzer [mm] x_{n}+\frac{x_{n}-n}{n} [/mm] (dieser Schätzer berücksichtigt die Lückenlängen zwischen den beobachteten Taxinummern).
Zeigen Sie, dass dieser Schätzer erwartungstreu ist.

Da ich zum ersten Mal etwas mit "erwartungstreu" zu tun habe, überfordert mich die Definition etwas. Meine Definitionen lauten: Ein Schätzer [mm] \hat{g} [/mm] von [mm] g(\theta) [/mm] heißt erwartungstreu, wenn [mm] \forall\theta\in\Theta: E_\theta(\hat{g}(X))=g(\theta). [/mm] Dabei ist für einen Schätzer [mm] T:X\rightarrow\mathbb{R} [/mm] der Erwartungswert definiert als [mm] E_\theta T=\sum\limits_{x\in X}T(x)P_\theta(x). [/mm]
X ist der Stichprobenraum, der alle möglichen Beobachtungen enthält, [mm] g(\theta) [/mm] ist die Funktion, die wir schätzen wollen, und es ist eine Familie von Verteilungen auf X durch [mm] \{P_\theta:\theta\in\Theta\} [/mm] gegeben.
Ein Schätzer ist eine Funktion [mm] X\rightarrow\mathbb{R} [/mm]

Meine Fragen: 1. Ich verstehe nicht, warum wir eine Funktion [mm] g(\theta) [/mm] schätzen wollen. Wir wollen doch eine einzige Zahl (die Anzahl der Taxis) schätzen?
2. Was ist das [mm] \Theta? [/mm]
3. Wie löse ich das konkrete Beispiel? Mein X ist wohl hier Teilmenge des [mm] \mathbb{R}^{n} [/mm] und mein Schätzer hängt nur von der letzten Komponente ab. Auf der linken Seite meiner Definition hätte ich [mm] E_\theta(\hat{g}(X))=\sum\limits_{x\in X}(x_{n}+\frac{x_{n}-n}{n}\cdot\binom{N}{n}^{-1}, [/mm] wie mache ich da weiter? Rechts habe ich [mm] g(\theta), [/mm] aber was soll das sein? Ist mein [mm] \theta [/mm] auch Element des [mm] \mathbb{R}^{n}? [/mm] Irgendwie komme ich nicht weiter.. Bitte um eure Hilfe.

Danke und liebe Grüße
Herr von Omikron

        
Bezug
Erwartungstreue zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 So 17.06.2012
Autor: luis52


> Meine Fragen: 1. Ich verstehe nicht, warum wir eine
> Funktion [mm]g(\theta)[/mm] schätzen wollen. Wir wollen doch eine
> einzige Zahl (die Anzahl der Taxis) schätzen?
>  2. Was ist das [mm]\Theta?[/mm]

Moin, i.a. ist [mm] $\theta$ [/mm] ein Modellparameter, z.B. das [mm] $\lambda$ [/mm] bei der Exponentialverteilung. Willst du deren Erwartungswert schaetzen, so ist die Parameterfunktion [mm] $g(\lambda)=1/\lambda$ [/mm] zu schaetzen.

In deiner Aufgabe ist $g(N)=N$.

>  3. Wie löse ich das konkrete Beispiel? Mein X ist wohl
> hier Teilmenge des [mm]\mathbb{R}^{n}[/mm] und mein Schätzer hängt
> nur von der letzten Komponente ab. Auf der linken Seite
> meiner Definition hätte ich
> [mm]E_\theta(\hat{g}(X))=\sum\limits_{x\in X}(x_{n}+\frac{x_{n}-n}{n}\cdot\binom{N}{n}^{-1},[/mm]
> wie mache ich da weiter? Rechts habe ich [mm]g(\theta),[/mm] aber
> was soll das sein? Ist mein [mm]\theta[/mm] auch Element des
> [mm]\mathbb{R}^{n}?[/mm] Irgendwie komme ich nicht weiter.. Bitte um
> eure Hilfe.

Bestimme die Verteilung von [mm] $x_n$ [/mm] und danach [mm] $\operatorname{E}[x_n]$. [/mm]

vg Luis



Bezug
                
Bezug
Erwartungstreue zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 So 17.06.2012
Autor: Herr_von_Omikron

Erstmal vielen Dank für die Antwort,
wie mache ich das denn mit der Verteilung? Bin ich auf dem richtigen Weg, wenn ich versuche zu bestimmen, wie groß die Wahrscheinlichkeit dafür ist, dass N der größte Wert meiner Stichprobe ist, dass N-1 der größte Wert meiner Stichprobe ist etc.?

Bezug
                        
Bezug
Erwartungstreue zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 So 17.06.2012
Autor: luis52

Moin,

vielleicht kannst du hier etwas Honig saugen.

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]