www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikErwartungswert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stochastik" - Erwartungswert
Erwartungswert < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:30 Do 29.12.2005
Autor: Viktoria

Aufgabe
Wie kommt man von E(X)= [mm] \summe_{k=1}^{n} [/mm] k*P(X=k) zu E(X)=n*p

Ich brauche die Zwischenrechnung dafür ,weil ich ein Referat halten muss und ich habe da eine im Buch stehen ,aber mit der komme ich nicht zurecht,da dort uch sämtliche Zwischenschritte fehlen...Bitte helft mir!Habe auch schon im ganz Internet danach gesucht....aber vergebens

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Do 29.12.2005
Autor: stochastik-stefan

Hallo,

diese Regel gilt nur für die BINOMIALVERTEILUNG. Such mal danach! Ich hab das hier gefunden, was ich ziemlich ausführlich finde, aber ob du mit Indexverschiebung und Binomialkoeffizienten rechnen kannst, weiß ich ja nicht:

[]http://www.mmnetz.de/huseyin/varianzbeweis.pdf

Guck dir es einfach mal an, ansonsten google noch was über BINOMIALVERTEILUNG und ERWARTUNGSWERT oder BEWEIS....

Bezug
        
Bezug
Erwartungswert: Erklärung
Status: (Antwort) fertig Status 
Datum: 23:33 Do 29.12.2005
Autor: clwoe

Hallo,

wenn du nun also ein Zufallsexperiment hast. Als erstes definierst du dir eine Zufallsgröße X. Die Zufallsgröße kann in unserem Fall nur zwei Werte annehmen pro Versuch. Entweder Treffer dies entspricht der 1 oder kein Treffer, dies entspricht der 0. Die Zufallsgröße kann also entweder 1 oder 0 annehmen, sprich wir können bei unserem Experiment pro Durchgang entweder einen Treffer haben oder eine Niete, egal was hier Treffer und Niete bedeuten mögen.
Nun müssen wir die Trefferwahrscheinlichkeit festlegen. Sagen wir die Wahrscheinlichkeit eines Treffers pro Versuch liegt bei 0,3. Die für die Niete also bei 0,7. Insgesamt führen wir 10 mal den Versuch durch.

Dann haben wir also ein Bernoulli-Experiment und unsere Zufallsgröße ist binomial verteilt, denn alle Bedingungen sind erfüllt. Wir betrachten das Experiment jetzt pro Versuch. Dann kann unsere Zufallsgröße also alle Werte von 0 bis n=1 annehmen, denn wir haben nur Treffer oder Niete und die Trefferwahrscheinlichkeit pro Versuch ändert sich nicht, sie bleibt jedesmal bei 0,3.
Dies ist erst mal wichtig festzuhalten, denn E(x)=n*p gilt nur für die Binomialverteilung einer Zufallsgröße.

Wie kommt man nun darauf, nun das ist jetzt ganz einfach.

Pro Versuch:

Treffer:0,3
Niete:0,7
Zufallsgröße X: 1 und 0

E(x)=1*0,3+0*0,7=0,3

Das heißt wir haben pro Versuch einen Erwartungswert von 0,3.

Für N=10 Versuche:

Treffer: 0,3
Niete: 0,7
Zufallsgröße X: 0 bis 10

Erwarungswert: E(x)=1*0,3+1*0,3+1*0,3+... das ganze zehnmal.

Eben alle Erwarungswerte der Einzelversuche addieren für den Erwarungswert für 10 Versuche, denn der Erwarungswert pro Versuch ändert sich ja nicht. Deshalb kann man auch gleich den Erwarungswert eines Versuchs mal n nehmen.

also: E(x)=n*p=10*0,3=3

somit bist du bei dieser Formel angekommen.

Gruß,
clwoe



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]