www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErwartungswert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Erwartungswert
Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:20 Sa 16.05.2009
Autor: stochastikniete

Aufgabe
Es sei X die Zufallsgröße "Länge der längsten Serie beim fünfmaligen Münzwurf". Berechnen Sie
1) E(X)
2) E(X²)
3) E(1/X)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Die längste Serie beim fündmaligen Münzwurf ist
K= Kopf Z= Zahl

(KKKKK) oder (ZZZZZ)
beide haben jeweils eine Wahscheinlichkeit von 1/32

Die Formel für E lautet: [mm] E(X)=\summe_{w aus Omega} [/mm] x(w)*p(w)

Wenn ich jetzt eine Tabelle anlege:

w=    (ZZZZZ)   (KKKKK)
p(w)= 1/32       1/32
X(w)=  5             5

stimmt das X(w)?
Und bedeutet das für mein
E(X) = 1/32*(5+5)= 5/16
E(X²)= 1/32*(25+25)=1 9/16
E(1/X)= 1/32*(1/5*1/5)=1/80
????

Danke für die HIlfe!

        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Sa 16.05.2009
Autor: Gonozal_IX

Hiho,

ich glaub du hast die Zufallsvariable falsch aufgefasst.
Also sicherlich ist die längste mögliche Serie 5 gleiche, aber die Zufallsvariable macht folgendes.

Sie nimmt einen 5maligen Münzwurf und gibt dir die Länge der längsten Serie.
Also ein paar Beispiele:

X((k,k,z,k,z)) = 2

X((z,z,k,k,k)) = 3

X((z,k,z,k,z)) = 1

X((z,z,z,k,k)) = 3

D,h.

X: [mm] \{0,1\}^5 \to \{0,1,2,3,4,5\} [/mm]

Und nun sollst du E[X] berechen.
Das Urbild zur 1 sind natürlich nur 2 Elemente, welche?
Wieviele Elemente hat denn der 5 malige Münzwurf?

Davon sollst du nun E[X] berechnen.

MFG,
Gono.

Bezug
                
Bezug
Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 So 17.05.2009
Autor: stochastikniete

also ich habe 32 Elemente beim fünfmaligen Münzwurf.

jetzt muss ich gucken, wie oft Z oder K hintereinander stehen und das ist dann meine längste Serie.
heißt ZZKKK = 3
oder KKZKK = 2

dann rechne ich zusammen wie oft die 3 und wie oft die 2 als ergebnis rauskommt. und erhalte damit die Wahrscheinlichkeit. P(X=3)= x*3/32
das mach ich für jede Zahl und setze es nachher in die Formel ein. Richtig?

Und ZZKKK wird nur für =3 gewertet nicht für =2 (da zwei ZZ auch eine Serie sind?

lg

Bezug
                        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 So 17.05.2009
Autor: Gonozal_IX


> also ich habe 32 Elemente beim fünfmaligen Münzwurf.

[ok]

>  
> jetzt muss ich gucken, wie oft Z oder K hintereinander
> stehen und das ist dann meine längste Serie.
>  heißt ZZKKK = 3
>  oder KKZKK = 2

Genauer X(...) = 3

> dann rechne ich zusammen wie oft die 3 und wie oft die 2
> als ergebnis rauskommt. und erhalte damit die
> Wahrscheinlichkeit. P(X=3)= x*3/32

Warum [mm] \bruch{3}{32}? [/mm] Für welche Tupel w gilt denn X(w) = 3 ?

>  das mach ich für jede Zahl und setze es nachher in die
> Formel ein. Richtig?

Jop.

>  
> Und ZZKKK wird nur für =3 gewertet nicht für =2 (da zwei ZZ
> auch eine Serie sind?)

Genau, denn X(zzkkk) = 3 und NICHT 2, weil nur die Längste Serie gewertet wird.

Als Tip noch: Schau dir zuerst die Urbilder zu 1,3,4,5 an und berechne (wie?) daraus das Urbild zur 2.
Warum ist dieses Vorgehen sinnvoll?


Bezug
                                
Bezug
Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:30 So 17.05.2009
Autor: stochastikniete

also hab ich für E(X)= 1*2/32+2*14/32+3*10/32+4*4/32+5*2/32 =2*11/16

für E(X²)= 1²*2/32+2²*14/32...=8*3/16

für E(1/X) =1/1*2/32+2/1*14/32...=103/240

ja?!

Bezug
                                        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 So 17.05.2009
Autor: Gonozal_IX

Hm

als erstes: Nutze bitte den Formeleditor, das macht das lesen wesentlich einfacher.

Zweitens: Wie kommst du auf [mm] 3*\bruch{10}{32} [/mm] bei E[X]?

MfG,
Gono.

Bezug
                                                
Bezug
Erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:53 So 17.05.2009
Autor: stochastikniete

Es gibt 10 Variationen für X=3
(KKZZZ)(ZZKKK)(KKKZZ)(ZKKKZ)(KZKKK)(ZZZKK)(ZZZKZ)(KZZZK)(ZKZZZ)(KKZZZ)
also [mm] \bruch{10}{32} [/mm]

das hab ich mit den anderen X=1(2,4,5) auch gemacht. nachgezählt und dann in E(X) eingesetzt.
also [mm] 3*\bruch{10}{32} [/mm]

ist das falsch?

Bezug
                                                        
Bezug
Erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:58 So 17.05.2009
Autor: Gonozal_IX

Nein das passt schon, ich hatte nur selbst einige Kombinationen vergessen und wollte wissen welche ;-)

Das Vorgehen stimmt soweit, wenn du dich nicht verrechnet hast, müsste es jetzt stimmen.

Bezug
                                                                
Bezug
Erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:59 So 17.05.2009
Autor: stochastikniete

juchuh... danke!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]