www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErwartungswert - Zeilenmaximum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Erwartungswert - Zeilenmaximum
Erwartungswert - Zeilenmaximum < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert - Zeilenmaximum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 Fr 02.08.2013
Autor: k0ol

Hallo zusammen,

seien [mm] $x_1$ [/mm] und [mm] $x_2$ [/mm] zwei Zufallszahlen aus der selben Verteilung, sagen wir Standardnormalverteilung, also [mm] $E[x_1]=E[x_2 [/mm] ]=0$. Außerdem sei [mm] $x_3=max\{x_1, x_2\}$. [/mm] Was ist der Erwartungswert von [mm] x_3? [/mm]

Ich habe das Ganze mal mit Stata simuliert. Bei der Standardnormalverteilung ist [mm] $E[x_3]\approx [/mm] 0.56$, wenn ich stattdessen sage [mm] $x_1,x_2\sim [/mm] N(0,2)$ kriege ich [mm] $E[x_3]\approx [/mm] 1.12$. Der Erwartungswert von [mm] $x_3$ [/mm] scheint also linear in der Standardabweichung der angenommenen Verteilung zu sein.

Ich würde diese Ergebnisse gerne theoretisch nachvollziehen, habe aber ehrlich gesagt keine Ahnung wie ich dabei vorgehen muss. Kann mir jemand von Euch bitte helfen?

Danke und Gruß
k0ol

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Erwartungswert - Zeilenmaximum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Fr 02.08.2013
Autor: Leopold_Gast

Es seien [mm]\varphi(t),\Phi(t)[/mm] Dichte und Verteilungsfunktion der Standardnormalverteilung. Vermutlich sollen [mm]X_1,X_2[/mm] unabhängig voneinander sein.

[mm]Y=\max \left\{ X_1,X_2 \right\}[/mm] ist genau dann kleiner oder gleich [mm]t[/mm], wenn beide Größen zugleich kleiner oder gleich [mm]t[/mm] sind. Als Verteilungsfunktion von [mm]Y[/mm] bekommt man damit:

[mm]F(t) = P \left( Y \leq t \right) = P \left( X_1 \leq t \, , \, X_2 \leq t \right) = P \left( X_1 \leq t \right) \cdot P \left( X_2 \leq t \right) = \left( \Phi(t) \right)^2[/mm]

Und die Dichte von [mm]Y[/mm] ist

[mm]f(t) = 2 \, \varphi(t) \, \Phi(t)[/mm]

Für den Erwartungswert von [mm]Y[/mm] gilt somit:

[mm]\mathcal{E}(Y) = \int_{- \infty}^{\infty} 2 t \, \varphi(t) \, \Phi(t) ~ \mathrm{d}t = \int_{- \infty}^{\infty} -2 \varphi'(t) \Phi(t) ~ \mathrm{d}t = \int_{- \infty}^{\infty} 2 \left( \varphi(t) \right)^2 ~ \mathrm{d}t = \frac{1}{\sqrt{\pi}}[/mm]

Bezug
                
Bezug
Erwartungswert - Zeilenmaximum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:04 Fr 02.08.2013
Autor: k0ol

Das ging ja schnell. Super! Vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]