Erwartungswerte bestimmen < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Ein fahrender Händler macht wöchentlich Werbefahrten über Land, um im Direktvertrieb ein Produkt zu verkaufen. Dabei nimmt er je ein Produkt zum DIrektverkauf mit. Jede Tour verursacht ihm Unkosten in Höhe von 50€. Jedes direkt vertriebene Produkt schlägt mit einem Umsatz von 120 € zu seinen Gunsten zu Buche. Aus langjähriger Erfahrung kennt er die Wahrscheinlichkeiten p(x) für die verschiedenen Verkaufszahlen x pro Woche:
p(0) = 0,06
p(1) = 0,1
p(2) = 0,2
p(3) = 0,4
p(4) = 0,15
p(5) = 0,06
p(6) = 0,03
a) Welchen Reingewinn durch Direktverkauf kann der Händler erwarten, wenn er drei Touren pro Woche unternimmt?
b) Wie groß ist der Erwartungswert für 0,1,...,6 Touren pro Woche?
c) Bei welcher Tourenzahl wird der Reingewinn maximal? |
Meine Lösungsvorschläge nebst jeweiligem Rechenweg lauten folgendermaßen:
zu a)
Reingewinn = Umsatz - Unkosten = x * 120€ - (x * 50€) = 3 * 120€ - (3 * 50€) = 360€ - 150€ = 120€
zu b)
Summe der jeweiligen Erwartungswerte berechnen:
[mm] E(x)=\summe_{i \in \IN} x_{i}*p_{i} [/mm] (Allgemein)
[mm] E(x)=\summe_{i = 0}^{6} x_i*p(x_i) [/mm] (Im Fall der Aufgabe)
E(0)= 0 * 0,06 =0
E(1)= 0 + (1*0,1) = 0,1
E(2)= 0 + (1*0,1) + (2*0,2) = 0,5
E(3)= 0 + (1*0,1) + (2*0,2) + (3*0,4) = 1,7
E(4)= 0 + (1*0,1) + (2*0,2) + (3*0,4) + (4*0,15) = 2,3
E(5)= 0 + (1*0,1) + (2*0,2) + (3*0,4) + (4*0,15) + (5*0,06) = 2,6
E(6)= 0 + (1*0,1) + (2*0,2) + (3*0,4) + (4*0,15) + (5*0,06) + (6*0,03) = 2,78
zu c)
Maximalen Reingewinn berechnen:
R(x)= E(x) * 120€ - (x*50€)
R(0) = E(0)*120€-(0*50€) = 0
R(1) = E(1)*120€-(1*50€) = 0,1*120€-50€ = -38€
R(2) = 0,5*120€-100€ = -40€
R(3) = 1,7*120€-150€ = 54€
R(4) = 2,3*120€-200€ = 76€
R(5) = 2,6*120€-250€ = 62€
R(6) = 2,78*120€-300€ = 33,6€
Antwort: Der Reingewinn ist bei 4 Touren maximal und beträgt 76 €.
Ich bitte bei allen Aufgaben um Korrektur, und bei Aufgabe a) um einen richtigen Lösungsansatz, da ich hier überzeugt bin, dass ich mit an Sicherheit grenzender Wahrscheinlichkeit falsch liege :)
Vielen Dank im Voraus für die Bearbeitung.
MfG
Michael
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.:
|
|
|
|
Hallo Michael und
ich möchte mal auf Zitate verzichtgen, da du meiner Ansicht nach sowohl die Aufgabe als auch das Konzept des Erwartungswertes nicht richtig verstanden hast.
Beginnen wir bei Aufgabenteil
a).:
Hier fährt der Händler drei Touren. Du kannst aber nicht annehmen, dass er jedesmal ein Produkt verkauft. Der Erwartungwert hier wäre also
E(A)=0*0.06+120*0.1+240*0.2+360*0.4-150=54 Euro
b).:
Hier würde man beim Topfschlagen 'wärmer' sagen.
Du hast hier
>
> E(0)= 0 * 0,06 =0
> E(1)= 0 + (1*0,1) = 0,1
> E(2)= 0 + (1*0,1) + (2*0,2) = 0,5
> E(3)= 0 + (1*0,1) + (2*0,2) + (3*0,4) = 1,7
> E(4)= 0 + (1*0,1) + (2*0,2) + (3*0,4) + (4*0,15) = 2,3
> E(5)= 0 + (1*0,1) + (2*0,2) + (3*0,4) + (4*0,15) +
> (5*0,06) = 2,6
> E(6)= 0 + (1*0,1) + (2*0,2) + (3*0,4) + (4*0,15) +
> (5*0,06) + (6*0,03) = 2,78
>
für jede Mögliche Anzahl an Touren den Erwartungswert für die Anzahl der Produkte ausgerechnet (ich habe aber die Resultate nicht geprüft). Diese Erwartungswerte müsste man natürlich noch mit 120 Euro multiplizieren und x*50 Euro abziehen. Aber, ich denke, auch hier ist die Aufgabe anders gemeint: du sollst wohl eine Funktion angeben, welche den Erwartungswert in Abhängigkeit der Tourenzahl x angibt.
Bei c) sieht die Sache von allen Aufgabenteilen am besten aus, weil du hier die Erwartungswerte für den Reingewinn beiden unterschiedlichen Tourenzahlen ausgerechnet hast. Aber auch hier habe ich die Vermutung, dass das anders gelöst werden soll. Sagt dir das Stichwort Maximum-Likelihood-Methode in diesem Zusammenhang etwas?
Gruß, Diophant
|
|
|
|