www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenErweiterung Fibonacci - Formel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Erweiterung Fibonacci - Formel
Erweiterung Fibonacci - Formel < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erweiterung Fibonacci - Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 So 07.06.2009
Autor: Help23

Aufgabe
Wir betrachten die Fibonacci - Kaninchen.
Die Zahl der Kaninchenpaare im Monat n ist durch  [mm] a_{n}= [/mm] 1/ [mm] \wurzel{5}=(T^{n}-sigma^{n}) [/mm] gegeben.
Jedes Kaninchenpaar (unabhängig vom Alter) fresse pro Monant 2 Kg Karotten. Wie viele Kg Karotten hat die Kaninchenpopulation nach n Monaten gefressen?

Hey Leute!

Um herauszubekommen, wieviele Kg Karotten die Kaninchen bis zu einem bestimmten Monat gefressen haben müsste ich ja rechnen

Kaninchenpaare im Monat1 x 2    +
Kaninchenpaare im Monat2 x 2    +
Kaninchenpaare im Monat2 x 2    + usw.

Also nach den Fibonacci - Zahlen
1 x2 + 1x2 + 2x2 + 3x2

Ich habe nur absolut keine Ahnung, wie ich das in die obige Formel packen soll, ich kannte die Deffinition für die Kaninchenpaare bisher auch nur anhand der rekursiven Definition......
Also mit
[mm] F_{n} [/mm] = [mm] F_{n}-1 [/mm] + [mm] F_{n}-2 [/mm]

Wäre das anhand dieser Formel vielleicht leichter?????

LG Help23

        
Bezug
Erweiterung Fibonacci - Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 So 07.06.2009
Autor: abakus


> Wir betrachten die Fibonacci - Kaninchen.
>  Die Zahl der Kaninchenpaare im Monat n ist durch  [mm]a_{n}=[/mm]
> 1/ [mm]\wurzel{5}=(T^{n}-sigma^{n})[/mm] gegeben.
>  Jedes Kaninchenpaar (unabhängig vom Alter) fresse pro
> Monant 2 Kg Karotten. Wie viele Kg Karotten hat die
> Kaninchenpopulation nach n Monaten gefressen?
>  Hey Leute!
>  
> Um herauszubekommen, wieviele Kg Karotten die Kaninchen bis
> zu einem bestimmten Monat gefressen haben müsste ich ja
> rechnen
>  
> Kaninchenpaare im Monat1 x 2    +
>  Kaninchenpaare im Monat2 x 2    +
>  Kaninchenpaare im Monat2 x 2    + usw.
>  
> Also nach den Fibonacci - Zahlen
> 1 x2 + 1x2 + 2x2 + 3x2
>  
> Ich habe nur absolut keine Ahnung, wie ich das in die obige
> Formel packen soll, ich kannte die Deffinition für die
> Kaninchenpaare bisher auch nur anhand der rekursiven
> Definition......
>  Also mit
> [mm]F_{n}[/mm] = [mm]F_{n}-1[/mm] + [mm]F_{n}-2[/mm]
>  
> Wäre das anhand dieser Formel vielleicht leichter?????

Unbedingt!
[mm] F_3=F_2+F_1 [/mm]
[mm] F_4=F_3+F_2=(F_2+F_1)+F_1=1*F_1+2*F_2 [/mm]
[mm] F_5=F_4+F_3=...=2*F_1+3*F_2 [/mm]
[mm] F_6=F_5+F_4=...=3*F_1+5*F_2 [/mm]

Jetzt die Summen:
[mm] S_3=F_1+F_2+F_3=...=2F_1+2F_2 [/mm]
[mm] S_4=S_3+F_4=3F_1+4F_2 [/mm]
[mm] S_5=S_4+F_5=5F_1+7F_2 [/mm]
[mm] S_6=S_5+F_6=8F_1+12F_2 [/mm]
Das hätte ich natürlich alles einfacher schreiben können, weil [mm] F_1=F_2=1 [/mm] gilt.
Aber schau dir die Koeffizienten in den einzelnen Summen an. Die Faktoren vor [mm] F_1 [/mm] sind Fibo-Zahlen, und die Faktoren vor [mm] F_2 [/mm] sind Vorgänger der nächsten Fibo-Zahl.
Jett kannst du mit dieser Erkenntnis wieder die expliziten Darstellungen verwenden.
Gruß Abakus




>  
> LG Help23


Bezug
                
Bezug
Erweiterung Fibonacci - Formel: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:50 Mo 08.06.2009
Autor: idonnow

Hallo ihr lieben!

> > [mm]F_{n}[/mm] = [mm]F_{n}-1[/mm] + [mm]F_{n}-2[/mm]

>  [mm]F_3=F_2+F_1[/mm]
>  [mm]F_4=F_3+F_2=(F_2+F_1)+F_1=1*F_1+2*F_2[/mm]
>  [mm]F_5=F_4+F_3=...=2*F_1+3*F_2[/mm]
>  [mm]F_6=F_5+F_4=...=3*F_1+5*F_2[/mm]

Also ich kann verstehen wie man zum z. B. von [mm] F_3 [/mm] auf [mm] F_2+F_1 [/mm] kommt , aber wie kommt man von [mm] (F_2+F_1)+F_1=1*F_1+2*F_2[/mm] [/mm] Ic
h würde hier [mm] schreiben:(F_2+F_1)+F_1=F_3+F_1 [/mm]



> Jetzt die Summen:
>  [mm]S_3=F_1+F_2+F_3=...=2F_1+2F_2[/mm]
>  [mm]S_4=S_3+F_4=3F_1+4F_2[/mm]
>  [mm]S_5=S_4+F_5=5F_1+7F_2[/mm]
>  [mm]S_6=S_5+F_6=8F_1+12F_2[/mm]

Dann kann ich ja die Summen erst recht nicht verstehen!


Könntet IHr mir bitte weiterhelfen???


lg

Bezug
                        
Bezug
Erweiterung Fibonacci - Formel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mi 10.06.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]