www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesErzeugenden Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - Erzeugenden Funktion
Erzeugenden Funktion < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeugenden Funktion: 3 Fragen zur Lösung
Status: (Frage) beantwortet Status 
Datum: 12:08 Mi 10.06.2009
Autor: Pille456

Aufgabe
Berechnen Sie die erzeugenden Funktion [mm] \summe_{n=0}^{\infty}a_n*t^n [/mm] zu den folgenden Folgen [mm] \{a_n\}_{n=0}^\infty: [/mm]
...
(ii) [mm] a_n [/mm] := [mm] (-0.5)^n [/mm] für alle n [mm] \in \IN_0 [/mm]

Hi,
Meine Lösung:
Laut Wikipedia gilt:
[mm] \sum_{n=0}^{\infty} a^n z^n [/mm] = [mm] \frac{1}{1 - az} [/mm] = [mm] \sum_{n=0}^{\infty} (-0.5)^n t^n [/mm] = [mm] \frac{1}{1 - -0.5*t} [/mm] = [mm] \frac{1}{1 + 0.5*t} [/mm]

Nun 1. Frage: Darf ich das hier so machen? Denn die Aufgabe lautet ja eigentlich, dass ich mit [mm] \summe_{n=0}^{\infty}a_n*t^n [/mm] rechnen soll.
2. Frage: wie kommt man bei Wikipedia auf diese Formel? (Hab dazu keine Herleitung gefunden...)
3. Frage: Wie geht man denn so allgemeiner an eine solche Aufgabe ran? Versucht man den Ausdruck [mm] \summe_{n=0}^{\infty}a_n*t^n [/mm] so entsprechend umzuformen,dass eine bekannte Form(siehe z.B: dann Wikipedia) dabei rauskommt oder muss man sich da bei jeder Aufgabe was anderes überlegen?

        
Bezug
Erzeugenden Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Mi 10.06.2009
Autor: fred97


> Berechnen Sie die erzeugenden Funktion
> [mm]\summe_{n=0}^{\infty}a_n*t^n[/mm] zu den folgenden Folgen
> [mm]\{a_n\}_{n=0}^\infty:[/mm]
>  ...
>  (ii) [mm]a_n[/mm] := [mm](-0.5)^n[/mm] für alle n [mm]\in \IN_0[/mm]
>  Hi,
>  Meine Lösung:
>  Laut Wikipedia gilt:
>  [mm]\sum_{n=0}^{\infty} a^n z^n[/mm] = [mm]\frac{1}{1 - az}[/mm] =
> [mm]\sum_{n=0}^{\infty} (-0.5)^n t^n[/mm] = [mm]\frac{1}{1 - -0.5*t}[/mm] =
> [mm]\frac{1}{1 + 0.5*t}[/mm]
>  
> Nun 1. Frage: Darf ich das hier so machen?

Ja



> Denn die Aufgabe
> lautet ja eigentlich, dass ich mit
> [mm]\summe_{n=0}^{\infty}a_n*t^n[/mm] rechnen soll.
>  2. Frage: wie kommt man bei Wikipedia auf diese Formel?

Sei $q [mm] \not=1$. [/mm] Dann ist (das kann man induktiv zeigen):

                    
[mm] \summe_{i=0}^{n}q^i [/mm] = [mm] \bruch{1-q^{n+1}}{1-q} [/mm]


Für $|q|<1$ gilt   [mm] $q^n \to [/mm] 0$ für $n [mm] \to \infty$, [/mm] somit

                   [mm] \summe_{n=0}^{\infty}q^n [/mm] = [mm] \bruch{1}{1-q} [/mm]



> (Hab dazu keine Herleitung gefunden...)
>  3. Frage: Wie geht man denn so allgemeiner an eine solche
> Aufgabe ran? Versucht man den Ausdruck
> [mm]\summe_{n=0}^{\infty}a_n*t^n[/mm] so entsprechend
> umzuformen,dass eine bekannte Form(siehe z.B: dann
> Wikipedia) dabei rauskommt oder muss man sich da bei jeder




> Aufgabe was anderes überlegen?

Darauf wirds hinauslaufen

FRED


Bezug
                
Bezug
Erzeugenden Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:22 Mi 10.06.2009
Autor: Pille456

Hm okay danke schonmal!
Zu Frage 3:

Wie würde denn eine solche Aufgabe aussehen, wo man nicht unbedingt mit den "Standardformeln" weiterkommt bzw. anders gefragt: Wie hat man sowas gelöst, bevor man diese Standardformeln wusste (oder wie ist man auf die im Einzelnen gekommen)?
Ich denke mal in einigen Fällen haben sich halt Mathematiker mehr oder weniger lange damit beschäftigt um bestimmte Formeln zu finden, aber es gibt doch bestimmt auch schwerere Aufgaben für "Otto-Normal" Studenten, z.B. eine solcher Formeln herzuleiten.

Bezug
                        
Bezug
Erzeugenden Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 Mi 10.06.2009
Autor: fred97


> Hm okay danke schonmal!
>  Zu Frage 3:
>  
> Wie würde denn eine solche Aufgabe aussehen, wo man nicht
> unbedingt mit den "Standardformeln" weiterkommt


Nimm mal

   $a_ n= [mm] sin(e^{cos(n^2+e^n- arctan(sin(n)))})$ [/mm]


FRED





> bzw. anders
> gefragt: Wie hat man sowas gelöst, bevor man diese
> Standardformeln wusste (oder wie ist man auf die im
> Einzelnen gekommen)?
>  Ich denke mal in einigen Fällen haben sich halt
> Mathematiker mehr oder weniger lange damit beschäftigt um
> bestimmte Formeln zu finden, aber es gibt doch bestimmt
> auch schwerere Aufgaben für "Otto-Normal" Studenten, z.B.
> eine solcher Formeln herzuleiten.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]