www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraErzeugendensystem & Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Erzeugendensystem & Basis
Erzeugendensystem & Basis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeugendensystem & Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Di 01.08.2006
Autor: Gimmy

Aufgabe
Die Frage ist zunächst, ob die 3 Vektoren LU sind:
[mm] \vektor{1 \\ 2 \\ -2 \\ 1}, \vektor{-2 \\ -3 \\ 4 \\ 2}, \vektor{-2 \\ -2 \\ 3 \\ 6} [/mm]

Desweiteren:
- Bestimmen Sie eine Basis von S
- Wie lautet die Dimension

Hallo Leute,

Zunächst mal mein Ansatz...

Ich führe den GJA-T1 durch und komme somit auf 2 ausgezeichnete Spalten, deshalb sind diese 3 Vektoren LA. Richtig?

Nun kommen die Unsicherheiten...
- Bilden die Vektoren in den ausgezeichneten Spalten das Erzeugendensystem? Wann ja, warum?
- Die Basis müsste dann in diesem Fall = dem Erzeugendensystem sein, oder? Der Vektor v3 lässt sich ja durch die übrigen darstellen... (Spalte nicht ausgez.)
- Die Dimension ist meiner Meinung nach gleich der Anzahl der Auszeichnungen, also 2. Richtig?

Ich wäre für eure Hilfe sehr dankbar!
MfG
Gimmy

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Erzeugendensystem & Basis: noch nicht ganz klar
Status: (Antwort) fertig Status 
Datum: 07:57 Mi 02.08.2006
Autor: statler


> Die Frage ist zunächst, ob die 3 Vektoren LU sind:
>   [mm]\vektor{1 \\ 2 \\ -2 \\ 1}, \vektor{-2 \\ -3 \\ 4 \\ 2}, \vektor{-2 \\ -2 \\ 3 \\ 6}[/mm]
>  
> Desweiteren:
> - Bestimmen Sie eine Basis von S
>  - Wie lautet die Dimension


Hallo du Leut, also im Ernst: [willkommenmr]

> Zunächst mal mein Ansatz...
>  
> Ich führe den GJA-T1 durch und komme somit auf 2
> ausgezeichnete Spalten, deshalb sind diese 3 Vektoren LA.
> Richtig?

Was ist denn der GJA-T1? Ich gehe einfach mal davon aus, daß du bis hier alles richtig gemacht hast. Nach meinem Verfahren würde ich sonst ein Gleichungssystem aufstellen und lösen und hoffentlich zum gleichen Ergebnis kommen.

> Nun kommen die Unsicherheiten...
>  - Bilden die Vektoren in den ausgezeichneten Spalten das
> Erzeugendensystem? Wann ja, warum?

Aus einem Erz.-System kann ich natürlich einen Vektor, der sich durch die anderen darstellen läßt, herausstreichen, was überbleibt, ist immer noch ein Erz.-System.

>  - Die Basis müsste dann in diesem Fall = dem
> Erzeugendensystem sein, oder?

Ein Erz.-System aus linear unabhängigen Vektoren ist eine Basis, so definiert man üblicherweise, was 'Basis' bedeuten soll.

> Der Vektor v3 lässt sich ja
> durch die übrigen darstellen... (Spalte nicht ausgez.)

Wenn v3 der letzte (rechteste) Vektor sein soll, stimmt das nach meiner Überschlagsrechnung im Kopf nicht. Dann wäre das unten falsch, obwohl der Gedankengang richtig ist.

>  - Die Dimension ist meiner Meinung nach gleich der Anzahl
> der Auszeichnungen, also 2. Richtig?

S. o.; vielleicht rechnen wir beide alles nochmal nach. Oder jd. anders ist schneller, ich lasse die Frage mal auf teilweise beantwortet.

Gruß aus HH-Harburg
Dieter


Bezug
        
Bezug
Erzeugendensystem & Basis: jetzt doch klar
Status: (Antwort) fertig Status 
Datum: 11:49 Mi 02.08.2006
Autor: statler

Hallo nochmal!

> Die Frage ist zunächst, ob die 3 Vektoren LU sind:
>   [mm]\vektor{1 \\ 2 \\ -2 \\ 1}, \vektor{-2 \\ -3 \\ 4 \\ 2}, \vektor{-2 \\ -2 \\ 3 \\ 6}[/mm]
>  
> Desweiteren:
> - Bestimmen Sie eine Basis von S
>  - Wie lautet die Dimension

Die 3 Vektoren sind lin. unabhängig, dann bilden sie eine Basis des von ihnen aufgespannten Raums, und dessen Dim. ist dann 3.

Mahlzeit
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]