Erzeuger Borel-Algebra < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:02 So 29.11.2009 | Autor: | julsch |
Aufgabe | Zeigen Sie, dass die Borel-Sigma-Algebra B( [mm] \IR \cup [/mm] {- [mm] \infty, \infty [/mm] } ) von [mm] \IR \cup [/mm] {- [mm] \infty, \infty [/mm] } von den Mengen (a, [mm] +\infty [/mm] ], [mm] a\in \IR [/mm] erzeugt wird. |
Hallo Zusammen!
Ich weiß nicht wirklich, ob es richtig ist, was ich mir bis jetzt überlegt habe und wie ich es zeigen soll.
Definition Borel-Sigma-Algebra:
(X,d) metrischer Raum, T [mm] \subset [/mm] P(X) Menge der offenen Teilmengen. B(X) = Sigma(T) heißt Borel-Sigma-Algebra.
Definition Erzeuger:
A [mm] \subset [/mm] P(X) Sigma-Algebra, ist Sigma(E) = A, so ist E [mm] \subset [/mm] P(X) Erzeuger von A.
zu zeigen ist ja eigentlich: (a, [mm] +\infty] [/mm] , a [mm] \in \IR [/mm] ist Erzeuger von Borel-Sigma-Algebra
Kann ich nicht eigentlich zeigen: (a, + [mm] \infty [/mm] ] ist die Menge der offenen Teilmengen von [mm] P(\IR \cup [/mm] {- [mm] \infty, \infty [/mm] } ) ??
Wenn ja, wie zeigt man sowas?
LG Julsch
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:55 Mo 30.11.2009 | Autor: | pelzig |
Also erstmal ganz allgemein. Wenn [mm] $A\subset\mathfrak{P}(X)$ [/mm] ist, dann bezeichnen wir mit [mm] $\sigma(A)$ [/mm] die davon erzeugte [mm] $\sigma$-Algebra. [/mm] Dann gilt [mm] $\sigma(\sigma(A))=\sigma(A)$ [/mm] und [mm] $A\subset B\Rightarrow \sigma(A)\subset\sigma(B)$. [/mm] Jede Menge [mm] $\mathcal{E}\subset\mathfrak{P}(X)$ [/mm] mit [mm] $\sigma(\mathcal{E})=\sigma(A)$ [/mm] heißt Erzeuger dieser [mm] $\sigma$-Algebra [/mm] - insbesondere ist A ein Erzeuger von [mm] $\sigma(A)$.
[/mm]
Nun aber gilt [mm] $\sigma(\mathcal{S})=\sigma(\mathcal{E})\gdw\mathcal{S}\subset\sigma(\mathcal{E})\text{ und }\mathcal{E}\subset\sigma(\mathcal{S})$.
[/mm]
In deinem konkreten Beispiel bezeichne [mm] $\mathcal{E}$ [/mm] die Menge der offenen Mengen in [mm] $\overline{\IR}:=\IR\cup\{\pm\infty\}$. [/mm] Die Borelsche [mm] $\sigma$-Algebra [/mm] ist also [mm] $\sigma(\mathcal{E})$. [/mm] Du willst zeigen, dass für [mm] $\mathcal{S}:=\{(a,\infty]\mid a\in\IR\}$ [/mm] gilt [mm] $\sigma(\mathcal{S})=\sigma(\mathcal{E})$. [/mm] Nun benutze einfach obiges Lemma. In jedem Fall solltest du dir erstmal überlegen wie die offenen Mengen in [mm] $\overline{\IR}$ [/mm] aussehen.
Gruß, Robert
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 20:18 Mo 30.11.2009 | Autor: | julsch |
Meine offenen Mengen in [mm] \overline{\IR} [/mm] sehen doch so aus:
[mm] (a,\infty]; [/mm] [a, [mm] \infty]; [-\infty, [/mm] a); [mm] [-\infty, [/mm] a]
oder?
Dass [mm] \sigma(\mathcal{S}) \subset \sigma(\mathcal{E}) [/mm] ist leicht zu zeigen, nun muss ich aber auch noch zeigen, dass [mm] \sigma(\mathcal{S}) \supset\sigma(\mathcal{E}) [/mm] Wie kann ich begründen, dass [mm] \mathcal{E} \subset \sigma(\mathcal{S})? [/mm]
LG Julsch
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 04:20 Di 01.12.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|