www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieEulersche Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Zahlentheorie" - Eulersche Funktion
Eulersche Funktion < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eulersche Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:57 Mi 22.06.2011
Autor: steve.joke

Aufgabe
Es sei n [mm] \in \IN. [/mm] Zeige:

a) Ist n keine Primzahl, so ist [mm] \phi(n)\le [/mm] n-2
b) Es gibt eine Zahl [mm] n\in \IN [/mm] mit [mm] \phi(n)=n-2 [/mm]
c) Ist [mm] n\not= [/mm] 1,2, so ist [mm] \phi(n) \ge [/mm] 2
d) Ist n ungerade, so ist [mm] \phi(8n)=4\phi(n) [/mm]

[mm] (\phi [/mm] = Eulersche Funktion)

Hi,

bei dieser Aufgabe habe ich leider bisher nur die d) hinbekommen. Und dies mit Hilfe der Multiplikavität.

Bei den anderen komme ich irgendwie werde nich voran. Könnt ihr mir da vielleicht weiterhelfen?

Grüße

        
Bezug
Eulersche Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:15 Mi 22.06.2011
Autor: Schadowmaster

Das kann man eigendlich recht schnell mit der inhaltlichen Definition der eulerschen Funktion zeigen:
[]http://de.wikipedia.org/wiki/Eulersche_%CF%86-Funktion

Bei a) sollst du zeigen, dass es (wenn n keine Primzahl ist) höchstens n-2 natürliche Zahlen geben kann, die zu n teilerfremd sind.
Das dürfte eigendlich klar sein; falls nicht überleg dir mal ein paar Beispiele, dann siehst du recht schnell wieso.

Bei b) musst du einfach so ein n finden. Als Tipp: Probier die ersten 10 Zahlen durch, da ist sicher eins dabei. ;)

Bei c) weißt du, dass jede natürliche Zahl größer 2 (die du hier betrachtest) auf jeden Fall teilerfremd zur 1 ist.
Du musst einzig eine zweite Zahl nennen, zu der diese Zahl ebenfalls teilerfremd ist (diese zweite Zahl kann man in Abhängigkeit von n eindeutig nennen).
Auch hier helfen, falls du keine findest, ein paar Beispiele weiter.

Die d) hast du ja schon ganz richtig gelöst. ;)

Also, benutze das Wissen, was genau [mm]\varphi(n)[/mm] bedeutet/wofür es steht, dann sollten diese Aufgaben kein Problem sein.


Bezug
                
Bezug
Eulersche Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:49 Mi 22.06.2011
Autor: steve.joke

Also die b) habe ich jetzt auch, für n=4 gilt die Behauptung.

Aber bleiben wir mal bei a), denn die habe ich noch nicht hinbekommen.

Habe das mal für paar Zahlen ausprobiert.

[mm] \phi(6)=2 \le [/mm] 4
[mm] \phi(8)=4 \le [/mm] 6
[mm] \phi(10)=4 \le [/mm] 8
[mm] \phi(12)=4 \le [/mm] 10

Ich sehe aber gerade noch nciht, wie ich das auf ein bel. n [mm] \in \IN [/mm] schließen kann, wenn n keine Primzahl ist??

Bezug
                        
Bezug
Eulersche Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Mi 22.06.2011
Autor: Schadowmaster

Du brauchst eine Zahl, die auf jeden Fall teilerfremd zu n ist.
Überleg mal:
3 ist teilfremd zu 2 und zu 1
4 ist teilerfremd zu 3 und zu 1
5 ist teilerfremd zu 4, zu 3, zu 2 und zu 1
6 ist teilerfremd zu 5 und zu 1
7 ist teierfremd zu 6,5,4,3,2 und 1
8 ist teilerfremd zu 7,5,3 und 1

erkennst du ein Muster?^^


Bezug
                                
Bezug
Eulersche Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:14 Mi 22.06.2011
Autor: steve.joke

hmmm,

entweder ist es schon zu spät, oder...

irgendwie erkenne ich kein muster, außer, dass bei den primzahlen gilt:

[mm] \phi(p)=p-1 [/mm]

Was soll denn da für ein muster dahinter stekcken? :-/

Bezug
                                        
Bezug
Eulersche Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Mi 22.06.2011
Autor: Schadowmaster

Ja, scheinbar ist es schon spät^^

Überleg mal, wieso für n>2 gilt: n und (n-1) sind teilerfremd.

(zB (2,3) sind teilerfremd, (3,4),(4,5),(5,6),(6,7),... sind alle jeweils teilerfremd)


Bezug
                                                
Bezug
Eulersche Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:43 Mi 22.06.2011
Autor: steve.joke

Ach jetzt hats endlich klick gemacht.

boah, hat echt lange gedauert :-).

aber mit n und n-1 habe ich ja die -2, und damit kann man dann auf [mm] \phi(n)\le [/mm] n-2 schließen. :-)

ok, die c) dürfte ja kein problem sein, da wir ja auf jedenfall immer die 1 und und eine primzahl haben, deswegen [mm] \ge [/mm] 2.

Danke für die Hilfe.

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]