www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeExakte Folge von Vektorräumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Exakte Folge von Vektorräumen
Exakte Folge von Vektorräumen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exakte Folge von Vektorräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:27 Do 01.02.2007
Autor: Methos

Aufgabe
Sei $0 [mm] \mapsto V_{0} \mapsto V_{1} \mapsto [/mm] ... [mm] \mapsto V_{k} \mapsto [/mm] 0$ eine exakte Folge endlich-dimensionaler Vektorräume mit [mm] $\varphi_{i} [/mm] : [mm] V_{i-1} \mapsto V_{i}$. [/mm] Zeigen Sie:
[mm] $\summe_{i=1}^{k} (-1)^i [/mm] dim [mm] V_{i} [/mm] = 0$

Hi,
bin bei obigen Problem soweit gekommen:
Man kann $dim [mm] V_{i}$ [/mm] schreiben als $dim [mm] V_{i} [/mm] = [mm] dim(Ker(\varphi_{i+1})) [/mm] + [mm] dim(Bild(\varphi_{i+1}))$ [/mm] und aufgrund der Exaktheit $dim [mm] V_{i} [/mm] = [mm] dim(Bild(\varphi_{i})) [/mm] + [mm] dim(Bild(\varphi_{i+1}))$. [/mm] Soweit richtig?
dann lässt sich die Summe ebenfalls ersetzen und somit verschwinden durch das wechselnde Vorzeichen (-1) alle Summanden bis auf [mm] $dim(Bild(\varphi_{0})) [/mm] + [mm] (-1)^k dim(Bild(\varphi_{k+1}))$. [/mm] Jetzt fällt mir aber eben nix mehr ein, warum diese Summe Null sein muss. Kann mir jemand helfen?
Gruß und Dank
Methos

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Exakte Folge von Vektorräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:28 Fr 02.02.2007
Autor: SEcki


>  bin bei obigen Problem soweit gekommen:
>  Man kann [mm]dim V_{i}[/mm] schreiben als [mm]dim V_{i} = dim(Ker(\varphi_{i+1})) + dim(Bild(\varphi_{i+1}))[/mm]
> und aufgrund der Exaktheit [mm]dim V_{i} = dim(Bild(\varphi_{i})) + dim(Bild(\varphi_{i+1}))[/mm].
> Soweit richtig?

Ja sehr richtig!

>  dann lässt sich die Summe ebenfalls ersetzen und somit
> verschwinden durch das wechselnde Vorzeichen (-1) alle
> Summanden bis auf [mm]dim(Bild(\varphi_{0})) + (-1)^k dim(Bild(\varphi_{k+1}))[/mm].

Ja, gut.

> Jetzt fällt mir aber eben nix mehr ein, warum diese Summe
> Null sein muss. Kann mir jemand helfen?

Hm, lol. Das ist banal ;-) Schau dir doch mal an, zwischen welchen Vektorräumen es Abbildungen sind, dann fällt es dir wohl wie Schuppen von den Augen :-)

Btw: das ist quasi die Eulersche Polyederformel ... jedenfalls sowas in der Art.

SEcki


Bezug
                
Bezug
Exakte Folge von Vektorräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:56 Fr 02.02.2007
Autor: Methos

Bitte lacht nicht, auch wenns für euch noch so banal is, für mich ist es nicht, sonst hätte ich die Frage ja nicht gestellt.
Naja, [mm] $\varphi_{0}$ [/mm] bildet zwischen $0$ und [mm] $V_{0}$ [/mm] ab und [mm] $\varphi_{k+1}$ [/mm] bildet zwischen [mm] $V_{k}$ [/mm] und $0$ ab, soweit war mir das schon klar. Womit ich persönlich Probleme habe, ist der Umgang mit $Bild$, bedeudet das, dass [mm] $Bild(\varphi_{0}) [/mm] = [mm] V_{0}$ [/mm] und [mm] $Bild(\varphi_{k+1}) [/mm] = 0$? Dann wäre  beim zweiten klar, dass die Dimension 0 ist, aber woher soll ich wissen, welche Dimension [mm] $V_{0}$ [/mm] hat?? Eulerscher Polyeder sagt mir gar nix.
Gruß
Methos

Bezug
                        
Bezug
Exakte Folge von Vektorräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:16 Fr 02.02.2007
Autor: statler

guten Morgen!

> Bitte lacht nicht, auch wenns für euch noch so banal is,
> für mich ist es nicht, sonst hätte ich die Frage ja nicht
> gestellt.

Kein Mensch lacht darüber!

>  Naja, [mm]\varphi_{0}[/mm] bildet zwischen [mm]0[/mm] und [mm]V_{0}[/mm] ab und
> [mm]\varphi_{k+1}[/mm] bildet zwischen [mm]V_{k}[/mm] und [mm]0[/mm] ab, soweit war
> mir das schon klar. Womit ich persönlich Probleme habe, ist
> der Umgang mit [mm]Bild[/mm], bedeutet das, dass [mm]Bild(\varphi_{0}) = V_{0}[/mm]
> und [mm]Bild(\varphi_{k+1}) = 0[/mm]? Dann wäre  beim zweiten klar,
> dass die Dimension 0 ist, aber woher soll ich wissen,
> welche Dimension [mm]V_{0}[/mm] hat??

Die Dimension des Bildes von [mm] \phi_{0} [/mm] ist hier die Dimension des Bildes des Nullraums, aber eine lineare Abb. bildet den Nullraum auf den Nullrum ab. Der Wertevorrat - also [mm] V_{0} [/mm] - kann so groß sein wie er will.

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]