www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperExakte Sequenzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Exakte Sequenzen
Exakte Sequenzen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exakte Sequenzen: Übungsaufgabe
Status: (Frage) überfällig Status 
Datum: 16:31 Sa 11.02.2012
Autor: Vilietha

Aufgabe
Sei
[mm] \* [/mm] A := [mm] \IZ[x,y] [/mm]
[mm] \* [/mm] I := (2)+(x)+(y) [mm] \subseteq [/mm] A ein Ideal
Konstruieren Sie eine exakte Sequenz von A-Moduln mit der folgenden Form:
$$ [mm] 0\overset{\iota}{\to} [/mm] A [mm] \overset{\phi}{\to} A^3 \overset{\pi}{\to} A^3 \overset{i}{\to} [/mm] I [mm] \to [/mm] 0. $$

Hallo zusammen,

ich habe mir folgende Abbildungen ausgedacht:

Die Abbildung [mm] \iota [/mm]
[mm] \iota:A \to A^3 [/mm]
[mm] \iota(f):=(0,0,f) [/mm]
Sie ist eindeutig injektiv.

Die Abbildung [mm] \phi [/mm]
[mm] \phi:A^3 \to A^3 [/mm]
[mm] \phi(f,g,h):=(f,g,0) [/mm]

Die Abbildung [mm] \pi [/mm]
[mm] \pi:A^3 \to [/mm] A
[mm] \pi(f,g,h):=(0,0,h_1+h_2+h_3), [/mm]
wobei wir h aufteilen in [mm] h=h_1+h_2+h_3 [/mm] mit [mm] h_1 [/mm] dem größtmöglichen Teil von h welcher einen Faktor 2 hat, [mm] h_2 [/mm] dem größtmöglichen Teil mit Faktor  x, und [mm] h_3 [/mm] ist der größtmögliche Teil mit einen y-Faktor. Ein Teil darf aber nicht mehrfach vorkommen (also zum Beispiel wenn f=x*y*2 dann verwenden wir ihn nur einmal). Falls noch ein Rest übrig bleibt der nicht von diesen drei Teilen [mm] h_1, h_2 [/mm] oder [mm] h_3 [/mm] erfasst wird, dann setzen wir ihn gleich 0. Auf diese Weise müßten alle Polynome in I wieder auf sich selbst abgebildet werden, und  so müsste die Abbildung also eigentlich surjektiv sein, oder?
Funktioniert dieser Weg so?

In der Übung damals hatten wir die Lösung nur ganz kurz besprochen. Es wurde etwas von freier Auflösung erwähnt, dass ker [mm] \pi [/mm] = [mm] \left<\vektor{x \\ -2 \\ 0}, \vektor{y \\ 0 \\ -2}, \vektor{0 \\ -y \\ x}\right>, \phi=\pmat{ 2 & -2 & 0 \\ y & 0 & -2 \\ 0 & -y & x } [/mm] usw... aber irgendwie kann ich damit wenig anfangen.


Ich freue mich auf eure Antworten.

Viele Grüße,
Vilietha


        
Bezug
Exakte Sequenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:35 Mo 13.02.2012
Autor: meili

Hallo  Vilietha,

> Sei

>  [mm]\*[/mm] A := [mm]\IZ[x,y][/mm]
>  [mm]\*[/mm] I := (2)+(x)+(y) [mm]\subseteq[/mm] A ein Ideal
>  Konstruieren Sie eine exakte Sequenz von A-Moduln mit der
> folgenden Form:
> [mm]0\overset{\iota}{\to} A \overset{\phi}{\to} A^3 \overset{\pi}{\to} A^3 \overset{i}{\to} I \to 0.[/mm]
>  
> Hallo zusammen,
>  
> ich habe mir folgende Abbildungen ausgedacht:

Deine Abbildungen stimmen nicht so recht mit denen der Aufgabenstellung
überein.

>  
> Die Abbildung [mm]\iota[/mm]
>  [mm]\iota:A \to A^3[/mm]
>  [mm]\iota(f):=(0,0,f)[/mm]
>  Sie ist eindeutig injektiv.

Das könnte die Abbildung  [mm]\phi[/mm] sein:
Die Abbildung [mm]\phi[/mm]
[mm]\phi:A \to A^3[/mm]
[mm]\phi(f):=(0,0,f)[/mm]
Sie ist eindeutig injektiv.

Die Abbildung [mm]\iota[/mm] könnte so aussehen:
[mm]\iota:0 \to A[/mm]
[mm]\iota(0):= 0[/mm]


>
> Die Abbildung [mm]\phi[/mm]
>  [mm]\phi:A^3 \to A^3[/mm]
>  [mm]\phi(f,g,h):=(f,g,0)[/mm]

Das sieht nach dem Definitions- und Wertebereich nach Abbildung [mm]\pi[/mm] aus.
Ob die Abbildungsvorschrift ok ist,oder ob die folgende mehr Sinn macht?

Jedenfalls fehlt noch  Die Abbildung i
[mm]i:A^3 \to[/mm] I mit [mm] Bild($\pi$) [/mm] = Kern(i).

>  
> Die Abbildung [mm]\pi[/mm]

  [mm]\pi:A^3 \to A^3 [/mm]

>  [mm]\pi(f,g,h):=(0,0,h_1+h_2+h_3),[/mm]
> wobei wir h aufteilen in [mm]h=h_1+h_2+h_3[/mm] mit [mm]h_1[/mm] dem
> größtmöglichen Teil von h welcher einen Faktor 2 hat,
> [mm]h_2[/mm] dem größtmöglichen Teil mit Faktor  x, und [mm]h_3[/mm] ist
> der größtmögliche Teil mit einen y-Faktor. Ein Teil darf
> aber nicht mehrfach vorkommen (also zum Beispiel wenn
> f=x*y*2 dann verwenden wir ihn nur einmal). Falls noch ein
> Rest übrig bleibt der nicht von diesen drei Teilen [mm]h_1, h_2[/mm]
> oder [mm]h_3[/mm] erfasst wird, dann setzen wir ihn gleich 0. Auf
> diese Weise müßten alle Polynome in I wieder auf sich
> selbst abgebildet werden, und  so müsste die Abbildung
> also eigentlich surjektiv sein, oder?
>  Funktioniert dieser Weg so?

Erst die Abbildung i sollte surjektiv sein. Die Abbildung [mm] $\pi$ [/mm] könnte wie beschrieben funktionieren.

>  
> In der Übung damals hatten wir die Lösung nur ganz kurz
> besprochen. Es wurde etwas von freier Auflösung erwähnt,
> dass ker [mm]\pi[/mm] = [mm]\left<\vektor{x \\ -2 \\ 0}, \vektor{y \\ 0 \\ -2}, \vektor{0 \\ -y \\ x}\right>[/mm],

Vielleicht [mm] \pi=\pmat{ 2 & -2 & 0 \\ y & 0 & -2 \\ 0 & -y & x }[/mm]

> usw... aber irgendwie kann ich damit wenig anfangen.
>
>
> Ich freue mich auf eure Antworten.
>  
> Viele Grüße,
>  Vilietha
>  

Gruß
meili

Bezug
                
Bezug
Exakte Sequenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:34 So 19.02.2012
Autor: Vilietha

Hallo Meili,

vielen Dank für Deine Antwort!
Habe sie erst jetzt (zufällig entdeckt), da in der Übersicht immer nur angezeigt wurde dass die Fälligkeit abgelaufen ist. Aber sie hilft mir jetzt natürlich immer noch weiter! :-)

Viele Grüße,
Vilietha

Bezug
        
Bezug
Exakte Sequenzen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:21 Mo 13.02.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]