www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikExistenz Erwartungswert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Existenz Erwartungswert
Existenz Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:55 Do 18.12.2014
Autor: Alex1993

Hallo,
ich schon wieder :-P
diesmal habe ich ein Problem bei der Unterscheidung von 2 Definitionen.
Es handelt sich um das Kapitel der Erwartungswerte und geht um die Integrierbarkeit der Zufallsvariable X. Hier die beiden Definitionen:
1. Ist X eine Zufallsvariable, deren Werte sämtlich in einer abzählbaren Teilmenge A [mm] \subset \IR [/mm] liegen, so ist goX genau dann integrierbar, wenn:
[mm] \sum_{x \n A} [/mm] |g(x)|* P{X=x} < [mm] \infty [/mm]


2. Es sei X eine reellwertige ZV, deren Verteilung P eine Lebesgue Dichte f besitzt. Dann ist goX integrierbar, genau dann wenn:

[mm] \integral_{}^{}{|goX| * f(x) d \lamda^{1} (x)} [/mm] < [mm] \infty [/mm]


Jetzt verstehe ich nicht genau, wann ich welche Definition zeigen soll. Wo liegt genau der Unterschied?

LG



        
Bezug
Existenz Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Do 18.12.2014
Autor: Gonozal_IX

Hiho,

> Wo liegt genau der Unterschied?

Mathematisch gesehen gibt es da keinen.
Eine Summe ist nicht anderes als das Integral bezüglich eines diskreten Wahrscheinlichkeitsmaßes.

> Jetzt verstehe ich nicht genau, wann ich welche Definition zeigen soll.

Ist dir denn der Unterschied zwischen einer diskreten und einer stetigen ZV klar?

Gruß,
Gono

Bezug
                
Bezug
Existenz Erwartungswert: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:08 Do 18.12.2014
Autor: Alex1993

Hey
okay danke.
Nein, leider nicht direkt- jedenfalls nicht in diesem Zusammenhang. Was hat dies denn mit der folgenden Situation zu tun?


LG

Bezug
                        
Bezug
Existenz Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 Do 18.12.2014
Autor: fred97


> Hey
>  okay danke.
>  Nein, leider nicht direkt- jedenfalls nicht in diesem
> Zusammenhang. Was hat dies denn mit der folgenden Situation
> zu tun?

Schau da mal rein:

http://www.uni-stuttgart.de/bio/adamek/numerik/Stat02.pdf

FRED

>  
>
> LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]