www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenExistenz mehrer Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Existenz mehrer Zahlen
Existenz mehrer Zahlen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz mehrer Zahlen: Wie beweisen ?
Status: (Frage) beantwortet Status 
Datum: 21:28 Mi 27.10.2010
Autor: TrockenNass

Aufgabe
Es sei a [mm] \in \IR. [/mm] Man zeige:

(i) Es gibt Zahlen m,n [mm] \in \IZ [/mm] mit

|ma-n| < [mm] \bruch{1}{2} [/mm]

(ii) Zu jedem [mm] \varepsilon [/mm] > 0 gibt es Zahlen m,n [mm] \in \IZ [/mm] mit

|ma-n| < [mm] \varepsilon [/mm]

Hinweis zu (ii): es genügt, [mm] \varepsilon [/mm] = [mm] 2^{-k} [/mm] mit k [mm] \in \IN [/mm] zu betrachten.

Genügt es wenn ich behaupte, das es keine Zahlen gibt, für dass das gilt und ich das dann zum Wiederspruch führe oder muss ich eine Fallunterscheidung machen?

Danke

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.onlinemathe.de/forum/Beweis-von-Zahlen

        
Bezug
Existenz mehrer Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Mi 27.10.2010
Autor: abakus


> Es sei a [mm]\in \IR.[/mm] Man zeige:
>  
> (i) Es gibt Zahlen m,n [mm]\in \IZ[/mm] mit
>
> |ma-n| < [mm]\bruch{1}{2}[/mm]

Hallo,
hier würde ich die Werte |ma-1|, |ma-2|, |ma-3| usw. (ebenso |ma-(-1)|, |ma-(-2)|, |ma-(-3)|...)  betrachten.
m*a ist irgendeine Zahl, die entweder ganz ist (dann gibt es eine zu subtrahierende Zahl ganze Zahl k, so dass |ma-k| sogar Null ist), oder
m*a liegt zwischen zwei benachbarten ganzen Zahlen k und k+1.
Wenn m*a nicht genau in der Mitte liegt, so ist die Differenz zu einer der beiden Zahlen kleiner als 0,5.
Wenn m*a genau in der Mitte zwischen zwei ganzen Zahlen liegt, dann wählst du ganz einfach einen andern Wert für m, bei dem das nicht der Fall ist.
Gruß Abakus

>  
> (ii) Zu jedem [mm]\varepsilon[/mm] > 0 gibt es Zahlen m,n [mm]\in \IZ[/mm]
> mit
>  
> |ma-n| < [mm]\varepsilon[/mm]
>  
> Hinweis zu (ii): es genügt, [mm]\varepsilon[/mm] = [mm]2^{-k}[/mm] mit k [mm]\in \IN[/mm]
> zu betrachten.
>  Genügt es wenn ich behaupte, das es keine Zahlen gibt,
> für dass das gilt und ich das dann zum Wiederspruch führe
> oder muss ich eine Fallunterscheidung machen?
>  
> Danke
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
> http://www.onlinemathe.de/forum/Beweis-von-Zahlen


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]