www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationExistenz uneig. Integral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Existenz uneig. Integral
Existenz uneig. Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz uneig. Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 Fr 07.06.2013
Autor: Helicase

Aufgabe
Existieren die uneigentlichen Integrale

a) [mm] \integral_{-\infty}^{\infty}{e^{-x^{2}} dx} [/mm]
b) [mm] \integral_{0}^{\infty}{\bruch{e^{-x}}{x} dx} [/mm] ?

Hallo Forum,

mit dem Nachweis der Existenz von Integralen hab ich noch ein paar Probleme.

zu a) würde ich das Integral erstmal zerlegen:

[mm] \limes_{a\rightarrow -\infty} \integral_{a}^{0}{e^{-x^{2}} dx} [/mm] + [mm] \limes_{a\rightarrow +\infty} \integral_{0}^{a}{e^{-x^{2}} dx} [/mm]

Für die Integrale würde ich dann die Substitution u = [mm] x^{2} [/mm] wählen.
Damit hab ich dann dx = [mm] \bruch{du}{2x}. [/mm]

Dann folgt für das Integral:

[mm] \integral_{a^{2}}^{0}{e^{-u}*\bruch{1}{2x} du} [/mm] = [mm] \bruch{1}{2x} \integral_{a^{2}}^{0}{e^{-u} du} [/mm] = [mm] \bruch{1}{2x}*[-1 [/mm] - (- [mm] e^{-a^{2}})] [/mm]

Für a [mm] \to [/mm] - [mm] \infty [/mm] folgt dann - [mm] \bruch{1}{2x} [/mm]

und

[mm] \integral_{0}^{a^{2}}{e^{-u}*\bruch{1}{2x} du} [/mm] = [mm] \bruch{1}{2x} \integral_{0}^{a^{2}}{e^{-u} du} [/mm] = [mm] \bruch{1}{2x}*[- e^{-a^{2}} [/mm] - (-1)]

Für a [mm] \to [/mm] - [mm] \infty [/mm] folgt dann + [mm] \bruch{1}{2x} [/mm]

und somit


[mm] \limes_{a\rightarrow -\infty} \integral_{a}^{0}{e^{-x^{2}} dx} [/mm] + [mm] \limes_{a\rightarrow +\infty} \integral_{0}^{a}{e^{-x^{2}} dx} [/mm] = 0

Würde dieses Integral dann existieren?

bei b) würde ich die partielle Integration ansetzen, hab es aber noch nicht zu Ende gerechnet.

Vielen Dank

Gruß Helicase

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Existenz uneig. Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Fr 07.06.2013
Autor: abakus


> Existieren die uneigentlichen Integrale

>

> a) [mm]\integral_{-\infty}^{\infty}{e^{-x^{2}} dx}[/mm]
> b)
> [mm]\integral_{0}^{\infty}{\bruch{e^{-x}}{x} dx}[/mm] ?
> Hallo Forum,

>

> mit dem Nachweis der Existenz von Integralen hab ich noch
> ein paar Probleme.

>

> zu a) würde ich das Integral erstmal zerlegen:

>

> [mm]\limes_{a\rightarrow -\infty} \integral_{a}^{0}{e^{-x^{2}} dx}[/mm]
> + [mm]\limes_{a\rightarrow +\infty} \integral_{0}^{a}{e^{-x^{2}} dx}[/mm]

>

> Für die Integrale würde ich dann die Substitution u =
> [mm]x^{2}[/mm] wählen.
> Damit hab ich dann dx = [mm]\bruch{du}{2x}.[/mm]

>

> Dann folgt für das Integral:

>

> [mm]\integral_{a^{2}}^{0}{e^{-u}*\bruch{1}{2x} du}[/mm] =
> [mm]\bruch{1}{2x} \integral_{a^{2}}^{0}{e^{-u} du}[/mm] =

Hallo,
so geht das nicht. x ist immer noch mit u verbunden, also von u abhängig. Somit ist das kein konstanter Faktor, den man mal soeben rausziehen kann.
Da [mm] $f(x)=e^{-x^2}$ [/mm] symmetrisch zur y-Achse ist, gilt [mm]\integral_{-\infty}^{\infty}{e^{-x^{2}} dx}=2*\integral_{0}^{\infty}{e^{-x^{2}} dx}[/mm]
Das Integral [mm]\integral_{0}^{\infty}{e^{-x^{2}} dx} [/mm]lässt sich zerlegen in 
[mm]\integral_{0}^{1}{e^{-x^{2}} dx} [/mm] (das hat eine endliche Größe) 
plus
[mm]\integral_{1}^{\infty}{e^{-x^{2}} dx} [/mm].
Für x>1 ist [mm] $x^2>x$ [/mm] und somit [mm] $-x^2<-x$ [/mm]
und folglich auch [mm] $e^{-x^2} Wenn nun selbst das (große) [mm]\integral_{1}^{\infty}{e^{-x} dx} [/mm] einen endlichen Wert hat, dann hat das kleinere [mm]\integral_{1}^{\infty}{e^{-x^2} dx} [/mm] erst recht einen endlichen Wert.

> [mm]\bruch{1}{2x}*[-1[/mm] - (- [mm]e^{-a^{2}})][/mm]

>

> Für a [mm]\to[/mm] - [mm]\infty[/mm] folgt dann - [mm]\bruch{1}{2x}[/mm]

>

> und

>

> [mm]\integral_{0}^{a^{2}}{e^{-u}*\bruch{1}{2x} du}[/mm] =
> [mm]\bruch{1}{2x} \integral_{0}^{a^{2}}{e^{-u} du}[/mm] =
> [mm]\bruch{1}{2x}*[- e^{-a^{2}}[/mm] - (-1)]

>

> Für a [mm]\to[/mm] - [mm]\infty[/mm] folgt dann + [mm]\bruch{1}{2x}[/mm]

>

> und somit

>
>

> [mm]\limes_{a\rightarrow -\infty} \integral_{a}^{0}{e^{-x^{2}} dx}[/mm]
> + [mm]\limes_{a\rightarrow +\infty} \integral_{0}^{a}{e^{-x^{2}} dx}[/mm]
> = 0

>

> Würde dieses Integral dann existieren?

>

> bei b) würde ich die partielle Integration ansetzen, hab
> es aber noch nicht zu Ende gerechnet.

>

> Vielen Dank

>

> Gruß Helicase

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
                
Bezug
Existenz uneig. Integral: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:58 So 09.06.2013
Autor: Helicase

Danke für den Hinweis.

Man sollte vorher genauer die Funktion anschauen .... Das vereinfacht manches.

bei b) komme ich auch nicht weiter.

Das "einfache" Integral für die Funktion f(x) = [mm] \bruch{e^{-x}}{x} [/mm] gibt es ja nicht ?

Wenn ich die Reihendarstellung für f(x) nutze habe ich

[mm] \integral_{-\infty}^{\infty}{\bruch{1}{x}*\summe_{i=0}^{\infty} \bruch{-x^{n}}{n!}dx} [/mm]

auch hier komme ich nicht weiter ....

Gruß Helicase

Bezug
                        
Bezug
Existenz uneig. Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:18 So 09.06.2013
Autor: Helicase

Ich sehe gerade, die Funktion umgeschrieben ergibt:

f(x) = [mm] x^{-1}*e^{-x} [/mm]

mit dem Integral folgt

[mm] \integral_{0}^{\infty}{x^{-1}*e^{-x} dx} [/mm]

und das ist doch das "Euler-Integral" ?

Das hat die Form:

[mm] \integral_{0}^{\infty}{t^{n}*e^{-t} dx} [/mm] = n!

bzw.

[mm] \integral_{0}^{\infty}{t^{x-1}*e^{-t} dx} [/mm] = (x-1)!

Wäre das meine Lösung?

Bezug
                                
Bezug
Existenz uneig. Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 So 09.06.2013
Autor: fred97

Ich empfehle Dir das:

http://de.wikipedia.org/wiki/Gammafunktion

FRED

Bezug
                        
Bezug
Existenz uneig. Integral: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:11 Fr 14.06.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]