www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenExistenz von Lösungen bei DGL
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Existenz von Lösungen bei DGL
Existenz von Lösungen bei DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz von Lösungen bei DGL: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:56 Di 26.04.2005
Autor: Crispy

Hallo,
ich habe folgendes Problem mit einer Aufgabe:

Sei [mm]f(t,x)=g(t)h(x)[/mm], [mm]g, h : [a - \epsilon; a + \epsilon] \to \IR[/mm] stetig, [mm]h(t)\not= 0[/mm] für [mm]t \not= a[/mm], [mm]h(a)=0[/mm] und seien die beiden
Integrale [mm]\integral_{a}^{a+\epsilon} {\bruch{du}{h(u)}}[/mm] und [mm]\integral_{a-\epsilon}^{a} {\bruch{du}{h(u)}}[/mm] divergent.
Zeigen Sie, dass die Anfangswertaufgabe
[mm]x'=f(t,x), x(t_0)=a[/mm]
eindeutig lösbar ist.

Ich bin hier leider etwas ratlos. Ich weiß, dass [mm]x'(t_0)=0[/mm] ist und [mm]x'[/mm] vermutlich auch nur da 0 ist.
Mir ist aber unklar welche Rolle das [mm]g(t)[/mm] und die Divergenz der beiden Integrale (noch dazu von [mm]\bruch{1}{h(u)}[/mm]) darin spielen?

Danke und Gruss, Crispy

        
Bezug
Existenz von Lösungen bei DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 09:31 Do 28.04.2005
Autor: mathemaduenn

Hallo Crispy,
Eine DGL mit x'=g(t)h(x) ist ja durch Trennung der Veränderlichen lösbar. Nun ist die Frage nach der eindeutigen Lösbarkeit zu klären.
Bsp.:
[mm] x'=2\wurzel{x} [/mm]  x(-1)=1
hätte die Lösungen
[mm] x=\begin{cases} t^2 & \mbox{für } t<0 \\ -t^2 & \mbox{für } t\ge 0 \end{cases} [/mm]
[mm] x=\begin{cases} t^2 & \mbox{für } t<0 \\ 0 & \mbox{für } t\ge 0 \end{cases} [/mm]
[mm] x=t^2 [/mm]
Also nicht eindeutig lösbar. Anders gesagt wird der Punkt y=0 erreicht ist die eindeutige Lösbarkeit nicht mehr gesichert. Also wären mMn 2 Dinge zu zeigen
1. wenn h(t) [mm] \not= [/mm] 0 dann bringt Trennung der Veränderlichen die eindeutige Lösung
2. Der Punkt h(t)=0 wird nie erreicht
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]