www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAxiomatische MengenlehreExistenzen herleiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Axiomatische Mengenlehre" - Existenzen herleiten
Existenzen herleiten < axiomatisch < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenzen herleiten: Aufgabe 1 hilfäää
Status: (Frage) beantwortet Status 
Datum: 19:15 Sa 31.05.2008
Autor: eumel

Aufgabe
Leiten Sie für gegebene Mengen X und Y die Existens der folgenden Mengen aus den Axiomen von ZF (ohne das Unendlichkeitsaxiom) her.
1. X x Y = {(x,y) : x [mm] \in [/mm] X, y [mm] \in [/mm] Y}
[mm] 2.X^Y [/mm] = {f : f:X -> Y Funktion}

Hallo zusammen ^^
ich hab leider kein Plan wie ich die axiome so zurechtdeichseln kann, dass was vernünftiges bei rauskommt :-((((
das zweite muss man doch iwie mit dem Auswahlaxiom hinkriegen, da es sich doch eine Funktion f finden lässt, die X nach Y abbildet oder?
beim ersten hätte ich gedacht es handelt sich um's geordnete  paar der mengen X,Y, was muss hierzu gezeigt werden??
lg
ben  

        
Bezug
Existenzen herleiten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:05 Sa 31.05.2008
Autor: Somebody


> Leiten Sie für gegebene Mengen X und Y die Existens der
> folgenden Mengen aus den Axiomen von ZF (ohne das
> Unendlichkeitsaxiom) her.
>  1. $X [mm] \times [/mm] Y = [mm] \{(x,y) : x \in X, y \in Y\}$ [/mm]
>  2. [mm] $\red{X^Y} [/mm] = [mm] \{f : f:X -> Y Funktion\}$ [/mm]

Ich denke, dies ist falsch geschrieben und sollte eigentlich [mm] $\red{Y^X} [/mm] = [mm] \{f : f:X -> Y Funktion\}$ [/mm] sein.

>  Hallo zusammen ^^
>  ich hab leider kein Plan wie ich die axiome so
> zurechtdeichseln kann, dass was vernünftiges bei rauskommt
> :-((((

Du musst schauen, wie das geordnete Paar $(x,y)$ als Menge definiert ist. Dann versuchst Du zu zeigen, dass alle solchen Mengen $(x,y)$ mit [mm] $x\in [/mm] X$ und [mm] $y\in [/mm] Y$ in einer Menge (gemäss ZF) enthalten sind und schliesslich kannst Du das Aussonderungsaxiom (Teilmengenaxiom) verwenden, um zu zeigen, dass [mm] $X\times [/mm] Y$ in ZF eine Menge ist. D.h. Du weist zunächst nach, dass es eine Obermenge von [mm] $X\times [/mm] Y$ in ZF gibt, und sonderst dann [mm] $X\times [/mm] Y$ aus der Obermenge aus.

> das zweite muss man doch iwie mit dem Auswahlaxiom
> hinkriegen, da es sich doch eine Funktion f finden lässt,
> die X nach Y abbildet oder?

Tipp: Man kann eine Funktion [mm] $f:X\rightarrow [/mm] Y$ als eine Teilmenge von [mm] $X\times [/mm] Y$ mit einer gewissen zusätzlichen Eigenschaft ("Rechtseindeutigkeit") auffassen (sog. "mengentheoretische Reduktion des Funktionsbegriffs").  Somit ist [mm] $Y^X$ [/mm] eine Teilmenge der Potenzmenge von [mm] $X\times [/mm] Y$. Sobald Du also Teilaufgabe 1 gelöst hast, kannst Du mittels Aussonderungsaxiom [mm] $Y^X$ [/mm] als Menge in ZF nachweisen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]