www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikExp-Verteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Exp-Verteilung
Exp-Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exp-Verteilung: Aufgabe 4
Status: (Frage) beantwortet Status 
Datum: 00:24 Sa 15.12.2007
Autor: marcsn

Aufgabe
Die Zufallsgrößen [mm]X_1,..,X_n[/mm] seien unabhängig und Exponentialverteilt mit Parameter [mm]\alpha[/mm].

a) Bestimmen sie die Verteilungsfunktion von [mm]Z_n:=max(X_1,...,X_n)[/mm]
b) Bestimmen sie die Verteilungsfunktion von [mm]W_n:=min(X_1,...,X_n)[/mm]

Hallo mal wieder :)

Hab gerade die Aufgabe bearbeitet bin mir aber mit meinem Ergebnis nicht so wirklich sicher. Wäre super wenn sich das mal jemand kurz anschauen könnte

a)
Es ist aufgrund der Unabhängigkeit:

[mm]F_{max}(x)=P[max(X_1,...,X_n)\le x]=P[X_1 \le x]\cdot \cdot \cdot P[X_n \le x]=(1-\alpha e^{-\alpha x})^n[/mm]


b)
Hier hab ich das Komplement angeschaut also:

[mm]F_{min}(x)=P[min(X_1,...,X_n)\le x]=1-P[min[X_1,...,X_n] > x]=1-(P[X_1 > x]\cdot \cdot P[X_n >x])[/mm]

und da weiter [mm]P[X_1 > x] = 1-P[X_1 \le x]= \alpha e^{-\alpha x}[/mm]

-> [mm]=1-(1-(1-\alpha e^{-\alpha x}))^n =1- (\alpha e^{-\alpha x})^n[/mm]



Gruß
Marc

        
Bezug
Exp-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:28 Sa 15.12.2007
Autor: luis52


>  Hallo mal wieder :)

Hallo Marc

>  
> Hab gerade die Aufgabe bearbeitet bin mir aber mit meinem
> Ergebnis nicht so wirklich sicher. Wäre super wenn sich das
> mal jemand kurz anschauen könnte

Schaun mer mal.

>  
> a)
>  Es ist aufgrund der Unabhängigkeit:
>  
> [mm]F_{max}(x)=P[max(X_1,...,X_n)\le x]=P[X_1 \le x]\cdot \cdot \cdot P[X_n \le x]=(1-\alpha e^{-\alpha x})^n[/mm]
>  

[ok]

>
> b)
>  Hier hab ich das Komplement angeschaut also:
>  
> [mm]F_{min}(x)=P[min(X_1,...,X_n)\le x]=1-P[min[X_1,...,X_n] > x]=1-(P[X_1 > x]\cdot \cdot P[X_n >x])[/mm]
>  
> und da weiter [mm]P[X_1 > x] = 1-P[X_1 \le x]= \alpha e^{-\alpha x}[/mm]
>  
> -> [mm]=1-(1-(1-\alpha e^{-\alpha x}))^n =1- (\alpha e^{-\alpha x})^n[/mm]

[ok] Alles okay.

Na, es wird doch! ;-)

Fuers Archiv: Die Verteilungsfunktion des Maximums einer Stichprobe [mm] $X_1,...,X_n$ [/mm] ist [mm] $F^n(x)$, [/mm]
die des Minimums ist [mm] $1-(1-F(x))^n$. [/mm] Hierbei ist $F$ die Verteilungsfunktion von [mm] $X_i$. [/mm]


vg Luis

Bezug
                
Bezug
Exp-Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 So 16.12.2007
Autor: koi

hallo!
ich hab diese aufgabe auch bearbeitet, kann aber das letzte gleichheitszeichen nicht ganz nachvollziehen.

[mm] F_{max}(x)=P[max(X_1,...,X_n)\le x]=P[X_1 \le x]\cdot \cdot \cdot P[X_n \le [/mm] x]
[mm] =(1-\alpha e^{-\alpha x})^n [/mm]

die verteilungsfunktion der exponentialverteilung ist doch
F(t) = [mm] (1-e^{-\alpha x}) [/mm] * Indikatorfunktion
meine lösung wäre jetzt
[mm] F_{max}(x)=...=(1- e^{-\alpha x})^n [/mm]

seh wohl grad mal wieder den wald vor lauter bäumen nicht, aber mir ist nicht klar, warum ich noch ein [mm] \alpha [/mm] im klammerausdruck habe

grüße koi


Bezug
                        
Bezug
Exp-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 So 16.12.2007
Autor: luis52


> hallo!
>  ich hab diese aufgabe auch bearbeitet, kann aber das
> letzte gleichheitszeichen nicht ganz nachvollziehen.
>  
> [mm]F_{max}(x)=P[max(X_1,...,X_n)\le x]=P[X_1 \le x]\cdot \cdot \cdot P[X_n \le[/mm]
> x]
>  [mm]=(1-\alpha e^{-\alpha x})^n[/mm]
>  
> die verteilungsfunktion der exponentialverteilung ist doch
> F(t) = [mm](1-e^{-\alpha x})[/mm] * Indikatorfunktion

Ein sehr guter Einwand

>  meine lösung wäre jetzt
>  [mm]F_{max}(x)=...=(1- e^{-\alpha x})^n[/mm]


[verwirrt] Gruebel, gruebel, wo ist denn der Unterschied zu Marcs Loesung?

Da [mm] $P(\mbox{Max}\le [/mm] x)=0$ fuer [mm] $x\le [/mm] 0$ ist dann  [mm] $F_{max}(x)=0$. [/mm]


vg Luis



Bezug
                                
Bezug
Exp-Verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:53 Mo 17.12.2007
Autor: koi

danke für die antwort, hat mich ein wenig verwirrt, dass ich keinen unterschied gefunden hab:)
grüße koi

Bezug
                                
Bezug
Exp-Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Mo 17.12.2007
Autor: freakish

Hallo,
ich arbeite auch an der Aufgabe und verstehe deine Erklärung leider nicht, Luis. Arbeitet ihr hier nicht die ganze Zeit mit der Dichte, obwohl nach der Verteilungsfunktion gefragt ist?

Bezug
                                        
Bezug
Exp-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Mo 17.12.2007
Autor: luis52

Hallo freakish,


>  ich arbeite auch an der Aufgabe und verstehe deine
> Erklärung leider nicht, Luis.

*Was* genau verstehst du denn nicht?

> Arbeitet ihr hier nicht die
> ganze Zeit mit der Dichte, obwohl nach der
> Verteilungsfunktion gefragt ist?

Nein.


vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]