www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteExplizite Darstellung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Grenzwerte" - Explizite Darstellung
Explizite Darstellung < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Explizite Darstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 Do 09.10.2008
Autor: rebell-der-sonne

Hallo!
Gegeben ist die Folge [mm] b_{n+1} [/mm] = [mm] 3*b_{n} [/mm] -1 und [mm] b_{0}=1 [/mm]
Gesucht ist die explizite Darstellung und [mm] b_{0} [/mm] bis [mm] b_{5} [/mm]

Das ausrechnen der Werte ist kein Problem,aber...
Meine Frage - geht das mit der expliziten Darstellung überhaupt???

Ich hab mir schon überlegt die Folge mit [mm] b_{n+1}=b_{n}*q [/mm] gleichzusetzten, mir das q ausrechen (wäre [mm] q=2*b_{n}-1) [/mm] und dann in [mm] b_{n}=b_{0}*q^{n} [/mm] einzusetzen, aber dan hab ich ja wieder [mm] b_{n} [/mm] drinnen. Irgendwie häng ich...

Danke im Vorraus,
Rebell der Sonne

        
Bezug
Explizite Darstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Do 09.10.2008
Autor: fred97


> Hallo!
>  Gegeben ist die Folge [mm]b_{n+1}[/mm] = [mm]3*b_{n}[/mm] -1 und [mm]b_{0}=1[/mm]
>  Gesucht ist die explizite Darstellung und [mm]b_{0}[/mm] bis [mm]b_{5}[/mm]
>  
> Das ausrechnen der Werte ist kein Problem,aber...
>  Meine Frage - geht das mit der expliziten Darstellung
> überhaupt???
>  
> Ich hab mir schon überlegt die Folge mit [mm]b_{n+1}=b_{n}*q[/mm]
> gleichzusetzten, mir das q ausrechen (wäre [mm]q=2*b_{n}-1)[/mm] und
> dann in [mm]b_{n}=b_{0}*q^{n}[/mm] einzusetzen, aber dan hab ich ja
> wieder [mm]b_{n}[/mm] drinnen. Irgendwie häng ich...
>  
> Danke im Vorraus,
>  Rebell der Sonne


Am besten , Du rechnest einfach mal:

[mm] b_1 [/mm] = 3-1 = [mm] 3-3^0 [/mm] = [mm] 3^1-3^0 [/mm]
[mm] b_2 [/mm] = 3(3-1)-1 = [mm] 3^2-3^1-3^0 [/mm] = [mm] 3^2-(3^0+3^1) [/mm]
[mm] b_3 [/mm] = [mm] 3(3^2-3^1-1)-1 [/mm] = [mm] 3^3 [/mm] - [mm] 3^2-3^1-3^0 [/mm] = [mm] 3^3-(3^0+3^1+3^2) [/mm]
.
.
.
.
Siehst Du jetzt ein Bildungsgesetz ?

Hinweis: nach der Summenformel für die endliche geometr. Reihe ist

        [mm] 3^0+3^1+ ...+3^{n-1} [/mm]  =   ?????

FRED




Bezug
                
Bezug
Explizite Darstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:03 Do 09.10.2008
Autor: rebell-der-sonne

Super danke. Auf die Idee wär ich nicht gekommen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]