www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenExplizites Euler-Verfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Explizites Euler-Verfahren
Explizites Euler-Verfahren < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Explizites Euler-Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:07 Fr 22.05.2015
Autor: Hubi1991

Aufgabe
Rechne zu jedem $h > 0$ und zum Anfangswertproblem $y'=2-y , y(0)=1$ die Lösung des expliziten Euler-Verfahrens aus und zeige, dass die kontinuierliche Lösung für $T < [mm] \infty$ [/mm] und $h [mm] \to [/mm] 0$ auf dem Intervall [0,T] gegen die kontinuierliche Lösung $y$ des Anfangswertproblems konvergieren

Hallo!

Die Lösung des Anfangswertproblems habe ich bereits bestimmt. Diese lautet: [mm] y(t)=2-e^{-t} [/mm]
Wenn ich nun das explizite Euler-Verfahren anwende, bekomme ich eine Treppenfunktion die von h abhängt:
[mm] u(t)=\begin{cases} 1, & \mbox{für } t=0 \\ h+1, & \mbox{für } 0 Allgemein ergibt sich:
[mm] u(jh)=2h+2h(1-h)+2h(1-h)^2+...+2h(1-h)^{j-1}+(1-h)^j , j \in \IN, j>1 [/mm]
[mm] u(h)=2h+(1-h)=h+1 [/mm]
Numerisch ist hier klar, wie der Hase läuft. Für möglichst kleines h und großes j ergeben sich viele Stützstellen, sodass man die Werte an den Stützstellen plotten lassen kann. Wie aber bekomme ich diese Treppenfunktion u zu der Lösung der Differentialgleichung oben? Muss ich die Treppen aufsummieren und dann h gegen 0 laufen lassen? Und um alle Werte zu bekommen muss ja dann j gegen unendlich gehen, oder?
Das ist mir noch nicht klar.
Bin für jede Hilfe dankbar.

Viele Grüße

Hubi
---------------------------------------
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Explizites Euler-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 Fr 22.05.2015
Autor: leduart

Hallo
nenne h=t/n
dann  u((n*h)=u(t) und klammere h bzw t/n aus und summiere die entstehende geometrische Reihe.
Gruß leduart

Bezug
                
Bezug
Explizites Euler-Verfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:44 Fr 22.05.2015
Autor: Hubi1991

Vielen Dank.

Damit erhält man dann also:
[mm] u(nh)=2h*(1+(1-h)+...+(1-h)^{n-1})+(1-h)^n=2-(1-h)^n =2-(1-\bruch{t}{n})^n \to 2-e^{-t} , n \to \infty [/mm]

Ich hatte den Fehler gemacht, dass ich immer gedacht habe , dass für kleines h und n gegen unendlich der Term [mm] $(1-h)^n$ [/mm] gegen 0 geht. Da aber h selbst von n abhängt funktioniert das nun.

Dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]