www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikExponentialfamilie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "mathematische Statistik" - Exponentialfamilie
Exponentialfamilie < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfamilie: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:23 Mi 23.06.2010
Autor: Irmchen

Hallo alle zusammen!


Vorab meine Definition der Expüonentialfamilie:

Definition :L

Sei [mm] \mathcal P = \{ P_{\theta} : \theta \in \Theta \} [/mm] eine Familie von Wahrscheinlichkeitsmaßen auf [mm] ( \Omega, \mathcal A) [/mm].
[mm] \mathcal P [/mm] heißt Exponentialfamilie, falls [mm] \mathcal P [/mm] durch ein [mm] \sigma [/mm] - endliches Maß odominiert wird, ein
[mm] k \in \mathbb N [/mm] und Funktionen
[mm]q_1, ... , q_k : \Theta \to \mathbb R [/mm] ein Statistiken
[mm] T_1, ... T_k : \Omega \to \mathbb R [/mm]
existieren, so dass gilt:

[mm]\bruch{dP_{\theta}}{d \mu} (x) = C( \theta) exp ( \summe_{i=1}^k q_i ( \theta) T_i (x) ) \h(x) [/mm]
[mm] h(x) : \Omega \to \mathbb R [/mm] Statistik und [mm] C( \theta) [/mm] Normierungskonstante.

Ich habe diese Frage:

ich weiß, dass verschobene Verteilungen im Normalfall keine Exponentialfamilien sind , wenn sie vorher Exponentialfamilien waren,denn
wenn man sich die Dichte einer Exponentialfamile anschau, passt die Addition einer Konstante irgendwie schlecht in die Form!

Aber ein Gleichverteilung ist wohl eine Exponentialfamilie.
Warum?
Und wenn ich diese verschiebe, bleibt sie dann immernoch eine.
Warum?

Vielen Dank!
Viele Grüße
Irmchen

        
Bezug
Exponentialfamilie: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 30.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]