www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe ZahlenExponentialform umrechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "komplexe Zahlen" - Exponentialform umrechnen
Exponentialform umrechnen < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialform umrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:40 Sa 15.09.2018
Autor: hase-hh

Aufgabe
Berechnen Sie die komplexen Zahlen

[mm] e^{i*n*\pi +2*k*\pi} [/mm]

und

[mm] e^{-i*n*\pi +2*k*\pi} [/mm]


Anmerkung: Das ist die vollständige Aufgabenstellung... Ich denke, es geht darum, die komplexe Zahl in die Gaussche Form z = a +b*i  zu bringen.


Moin Moin,

aber wie bringe ich diese Zahlen in die Form z = a +b*i  ?


Zunächst weiß ich, dass die Länge von z = 1 ist, da vor dem [mm] e^{...} [/mm]  kein r steht (bzw. r=1).  Richtig?


Meine Idee


Aufspalten
[mm] e^{i*n*\pi +2*k*\pi} [/mm]  = [mm] e^{i*n*\pi}*e^{2*k*\pi} [/mm]

Erste Frage:
Da sich die Funktion alle [mm] 2\pi [/mm] wiederholt, kann ich dann hier nicht einfach [mm] +2*k*\pi [/mm] vernachlässigen ?

Also  
[mm] e^{i*n*\pi +2*k*\pi} [/mm]  = [mm] e^{i*n*\pi} [/mm]


Dann würde ich den ersten Faktor mithilfe der trigonometrischen Form schreiben...

[mm] e^{i*n*\pi} [/mm] = [mm] e^{i*\pi}^n [/mm]

Ich betrachte im folgenden nur [mm] e^{i*\pi} [/mm]

[mm] e^{i*\pi} [/mm] = [mm] e^{i*\alpha} [/mm]  

z = r*(cos [mm] \alpha [/mm] + i*sin [mm] \alpha) [/mm]

mithin ist   z = 1*(cos [mm] \pi [/mm] + i*sin [mm] \pi) [/mm]

z = -1 +i*0
z = -1


bzw. bei der zweiten Zahl

[mm] e^{-i*n*\pi} [/mm] = [mm] e^{i*(-\pi)}^n [/mm]

Ich betrachte im folgenden nur [mm] e^{i*(-\pi)} [/mm]

[mm] e^{i*(-\pi)} [/mm] = [mm] e^{i*\alpha} [/mm]  

z = r*(cos [mm] \alpha [/mm] + i*sin [mm] \alpha) [/mm]

mithin ist   z = 1*(cos [mm] -\pi [/mm] + i*sin [mm] -\pi) [/mm]

z = -1 +i*0
z = -1

Also entsteht hier zweimal dieselbe Zahl???




Danke für eure Hilfe!  











        
Bezug
Exponentialform umrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Sa 15.09.2018
Autor: HJKweseleit

Wenn du davon ausgehst, dass n [mm] \in \IZ [/mm] ist, solltest du auch davon ausgehen, dass k [mm] \in \IZ [/mm] ist (meistens ist das so gemeint).

Dann kommt [mm] (-1)^k [/mm] heraus.

Bezug
                
Bezug
Exponentialform umrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:12 Sa 15.09.2018
Autor: hase-hh

Moin,

> Wenn du davon ausgehst, dass n [mm]\in \IZ[/mm] ist, solltest du
> auch davon ausgehen, dass k [mm]\in \IZ[/mm] ist (meistens ist das
> so gemeint).
>  
> Dann kommt [mm](-1)^k[/mm] heraus.

also einmal würde ich davon ausgehen, dass n [mm] \in \IN [/mm] und k [mm] \in \IZ [/mm]  gilt.

Wie kommst du dann auf deine Lösung?

Bezug
                        
Bezug
Exponentialform umrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Sa 15.09.2018
Autor: Fulla

Hallo hase-hh,

ich denke, HJKweseleit hat da einen kleinen Fehler gemacht...

Du schreibst oben richtigerweise
    [mm]e^{in\pi+2k\pi}=e^{in\pi}\cdot e^{2k\pi}[/mm].

Nun ist aber [mm]e^{2k\pi}\in\mathbb R[/mm] und damit ist der Betrag der Zahl nur im Fall [mm]k=0[/mm] gleich 1.

Weiter ist [mm]e^{in\pi}=(-1)^n[/mm] für [mm]n\in\mathbb Z[/mm], was man sich am Einheitskreis leicht klarmachen kann.

Insgesamt ist dann
    [mm]e^{in\pi+2k\pi}=(-1)^n\cdot e^{2k\pi}[/mm].

Lieben Gruß,
Fulla

Bezug
                                
Bezug
Exponentialform umrechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:51 Sa 15.09.2018
Autor: HJKweseleit

Ja, ich habe k und n verwechselt:

[mm] e^{2k\pi}=1 [/mm] und [mm] e^{n\pi}=(e^{\pi})^n=(-1)^n, [/mm] somit

[mm] (-1)^n [/mm]

Bezug
                                        
Bezug
Exponentialform umrechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:27 Sa 15.09.2018
Autor: Chris84

Huhu

> Ja, ich habe k und n verwechselt:
>  
> [mm]e^{2k\pi}=1[/mm] und [mm]e^{n\pi}=(e^{\pi})^n=(-1)^n,[/mm] somit


Du machst wieder den Fehler, dass [mm] $e^{2k\pi}=1$. [/mm] Da steht doch gar kein $i$ ;)

>  
> [mm](-1)^n[/mm]  

Gruss,
Chris

Bezug
                                                
Bezug
Exponentialform umrechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:53 So 16.09.2018
Autor: HJKweseleit

Wer das erste Knopfloch verfehlt, kommt mit dem Zuknöpfen nicht zu Rande. (Goethe)

Ja, ich bin z.Zt. wohl ziemlich blind. Also alles murks, was ich geschrieben habe. Sorry!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]